11,796 research outputs found

    A method of classification for multisource data in remote sensing based on interval-valued probabilities

    Get PDF
    An axiomatic approach to intervalued (IV) probabilities is presented, where the IV probability is defined by a pair of set-theoretic functions which satisfy some pre-specified axioms. On the basis of this approach representation of statistical evidence and combination of multiple bodies of evidence are emphasized. Although IV probabilities provide an innovative means for the representation and combination of evidential information, they make the decision process rather complicated. It entails more intelligent strategies for making decisions. The development of decision rules over IV probabilities is discussed from the viewpoint of statistical pattern recognition. The proposed method, so called evidential reasoning method, is applied to the ground-cover classification of a multisource data set consisting of Multispectral Scanner (MSS) data, Synthetic Aperture Radar (SAR) data, and digital terrain data such as elevation, slope, and aspect. By treating the data sources separately, the method is able to capture both parametric and nonparametric information and to combine them. Then the method is applied to two separate cases of classifying multiband data obtained by a single sensor. In each case a set of multiple sources is obtained by dividing the dimensionally huge data into smaller and more manageable pieces based on the global statistical correlation information. By a divide-and-combine process, the method is able to utilize more features than the conventional maximum likelihood method

    Optimising visibility analyses using topographic features on the terrain

    Get PDF

    Potential of remote sensing and open street data for flood mapping in poorly gauged areas: a case study in Gonaives, Haiti

    Get PDF
    The Hispaniola Island, in the Caribbean tropical zone, is prone to extreme flood events. Floods are caused by tropical springs and hurricanes and may lead to human losses, economical damages, and spreading of waterborne diseases. Flood studies based upon hydrological and hydraulic modelling are hampered by almost complete lack of hydro-meteorological data. Thenceforth, and given the cost and complexity in the organization of field measurement campaigns, the need for exploitation of remote sensing data, and open source data bases. We present here a feasibility study to explore the potential of (i) high-resolution of digital elevation models (DEMs) from remote imagery and (ii) remotely sensed precipitation data, to feed hydrological flow routing and hydraulic flood modelling, applied to the case study of river La Quinte closed to Gonaives (585 km2), Haiti. We studied one recent flood episode, namely hurricane Ike in 2008, when flood maps from remote sensing were available for validation. The atmospheric input given by hourly rainfall was taken from downscaled Tropical Rainfall Measuring Mission (TRMM) daily estimates, and subsequently fed to a semi-distributed DEM-based hydrological model, providing an hourly flood hydrograph. Then, flood modelling using Hydrologic Engineering Center River Analysis System (HEC-RAS 1D, one-dimensional model for unsteady open channel flow) was carried out under different scenarios of available digital elevation models. The DEMs were generated using optical remote sensing satellite WorldView-1 and Shuttle Radar Topography Mission (SRTM), combined with information from an open source database (OpenStreetMap). Observed flood extent and land use have been extracted using Systùme Pour l’Observation de la Terre-4 (SPOT-4) imagery. The hydraulic model was tuned for floodplain friction against the observed flooded area. We compared different scenarios of flood simulation and the predictive power given by model tuning. Our study provides acceptable results in depicting flooded areas, especially considering the tremendous lack of ground data, and shows the potential of hydrological modelling approach fed by remote sensing information in Haiti, and in similarly data-scarce areas. Our approach may be useful to provide depiction of flooded areas for the purpose of (i) flood design for urban planning under a frequency-driven approach and (ii) forecasting of flooded areas for warning procedures, pending availability of weather forecast with proper lead time

    The NIKA2 large-field-of-view millimetre continuum camera for the 30 m IRAM telescope

    Get PDF
    Context. Millimetre-wave continuum astronomy is today an indispensable tool for both general astrophysics studies (e.g. star formation, nearby galaxies) and cosmology (e.g. cosmic microwave background and high-redshift galaxies). General purpose, large-field-of-view instruments are needed to map the sky at intermediate angular scales not accessible by the high-resolution interferometers (e.g. ALMA in Chile, NOEMA in the French Alps) and by the coarse angular resolution space-borne or ground-based surveys (e.g. Planck, ACT, SPT). These instruments have to be installed at the focal plane of the largest single-dish telescopes, which are placed at high altitude on selected dry observing sites. In this context, we have constructed and deployed a three-thousand-pixel dual-band (150 GHz and 260 GHz, respectively 2 mm and 1.15 mm wavelengths) camera to image an instantaneous circular field-of-view of 6.5 arcmin in diameter, and configurable to map the linear polarisation at 260 GHz. Aims. First, we are providing a detailed description of this instrument, named NIKA2 (New IRAM KID Arrays 2), in particular focussing on the cryogenics, optics, focal plane arrays based on Kinetic Inductance Detectors, and the readout electronics. The focal planes and part of the optics are cooled down to the nominal 150 mK operating temperature by means of an adhoc dilution refrigerator. Secondly, we are presenting the performance measured on the sky during the commissioning runs that took place between October 2015 and April 2017 at the 30-m IRAM telescope at Pico Veleta, near Granada (Spain). Methods. We have targeted a number of astronomical sources. Starting from beam-maps on primary and secondary calibrators we have then gone to extended sources and faint objects. Both internal (electronic) and on-the-sky calibrations are applied. The general methods are described in the present paper. Results. NIKA2 has been successfully deployed and commissioned, performing in-line with expectations. In particular, NIKA2 exhibits full width at half maximum angular resolutions of around 11 and 17.5 arcsec at respectively 260 and 150 GHz. The noise equivalent flux densities are, at these two respective frequencies, 33±2 and 8±1 mJy s1/2. A first successful science verification run was achieved in April 2017. The instrument is currently offered to the astronomy community and will remain available for at least the following ten years
    • 

    corecore