49 research outputs found

    A CMOS Digital SiPM With Focal-Plane Light-Spot Statistics for DOI Computation

    Get PDF
    Silicon photomultipliers can be used to infer the depth-of-interaction (DOI) in scintillator crystals. DOI can help to improve the quality of the positron emission tomography images affected by the parallax error. This paper contemplates the computation of DOI based on the standard deviation of the light distribution. The simulations have been carried out by GAMOS. The design of the proposed digital silicon photomultiplier (d-SiPM) with focal plane detection of the center of mass position and dispersion of the scintillation light is presented. The d-SiPM shares the same off-chip time-to-digital converter such that each pixel can be individually connected to it. A miniature d-SiPM 8×8 single-photon avalanche-diode (SPAD) array has been fabricated as a proof of concept. The SPADs along each row and column are connected through an OR combination technique. It has 256×256μm2 without peripherals circuits and pads. The fill factor is about 11%. The average dark count rate of the mini d-SiPM is of 240 kHz. The average photon detection efficiency is 5% at 480 nm wavelength, room temperature, and 0.9 V excess voltage. The dynamic range is of 96 dB. The sensor array features a time resolution of 212 ps. The photon-timing SNR is 81 dB. The focal plane statistics of the light-spot has been proved as well by measurements.Office of Naval Research (USA) ONR N000141410355Ministerio de Economía y Competitividad TEC2015-66878-C3- 1-RJunta de Andalucía P12-TIC 233

    A bioinspired 128x128 pixel dynamic-vision-sensor

    Get PDF
    This paper presents a 128x128 dynamic vision sensor. Each pixel detects temporal changes in the local illumination. A minimum illumination temporal contrast of 10% can be detected. A compact preamplification stage has been introduced that allows to improve the minimum detectable contrast over previous designs, while at the same time reducing the pixel area by 1/3. The pixel responds to illumination changes in less than 3.6μs. The ability of the sensor to capture very fast moving objects has been verified experimentally. A frame-based sensor capable to achieve this, would require at least 100K frames per second.Unión Europea FP7-ICT-2007-1-216777Ministerio de Educación y Ciencia TEC2006-11730-C03-01 (SAMANTA2)Ministerio de Educación y Ciencia TEC2009-10639- C04-01 (VULCANO)Junta de Andalucía P06- TIC-1417 (Brain System

    A Wide Linear Dynamic Range Image Sensor Based on Asynchronous Self-Reset and Tagging of Saturation Events

    Get PDF
    We report a high dynamic range (HDR) image sensor with a linear response that overcomes some of the limitations of sensors with pixels with self-reset operation. It operates similar to an active pixel sensor, but its pixels have a novel asynchronous event-based overflow detection mechanism. Whenever the pixel voltages at the integration capacitance reach a programmable threshold, the pixels self-reset and send out asynchronously an event indicating this. At the end of the integration period, the voltage at the integration capacitance is digitized and readout. Combining this information with the number of events fired by each pixel, it is possible to render linear HDR images. Event operation is transparent to the final user. There is no limitation for the number of self-resets of each pixel. The output data format is compatible with frame-based devices. The sensor was fabricated in the AMS 0.18- μm HV technology. A detailed system description and experimental results are provided in this paper. The sensor can render images with an intra-scene dynamic range of up to 130 dB with linear outputs. The pixels' pitch is 25 μm and the sensor power consumption is 58.6 mW.Universidad de Cádiz PR2016-072Ministerio de Economía y Competitividad TEC2015-66878-C3-1-RJunta de Andalucía TIC 2012-2338Office of Naval Research (USA) N00014141035

    Foveated Sampling Architectures for CMOS Image Sensors

    Get PDF
    Electronic imaging technologies are faced with the challenge of power consumption when transmitting large amounts of image data from the acquisition imager to the display or processing devices. This is especially a concern for portable applications, and becomes more prominent in increasingly high-resolution, high-frame rate imagers. Therefore, new sampling techniques are needed to minimize transmitted data, while maximizing the conveyed image information. From this point of view, two approaches have been proposed and implemented in this thesis: A system-level approach, in which the classical 1D row sampling CMOS imager is modified to a 2D ring sampling pyramidal architecture, using the same standard three transistor (3T) active pixel sensor (APS). A device-level approach, in which the classical orthogonal architecture has been preserved while altering the APS device structure, to design an expandable multiresolution image sensor. A new scanning scheme has been suggested for the pyramidal image sensor, resulting in an intrascene foveated dynamic range (FDR) similar in profile to that of the human eye. In this scheme, the inner rings of the imager have a higher dynamic range than the outer rings. The pyramidal imager transmits the sampled image through 8 parallel output channels, allowing higher frame rates. The human eye is known to have less sensitivity to oblique contrast. Using this fact on the typical oblique distribution of fixed pattern noise, we demonstrate lower perception of this noise than the orthogonal FPN distribution of classical CMOS imagers. The multiresolution image sensor principle is based on averaging regions of low interest from frame-sampled image kernels. One pixel is read from each kernel while keeping pixels in the region of interest at their high resolution. This significantly reduces the transferred data and increases the frame rate. Such architecture allows for programmability and expandability of multiresolution imaging applications

    MOSFET Modulated Dual Conversion Gain CMOS Image Sensors

    Get PDF
    In recent years, vision systems based on CMOS image sensors have acquired significant ground over those based on charge-coupled devices (CCD). The main advantages of CMOS image sensors are their high level of integration, random accessibility, and low-voltage, low-power operation. Previously proposed high dynamic range enhancement schemes focused mainly on extending the sensor dynamic range at the high illumination end. Sensor dynamic range extension at the low illumination end has not been addressed. Since most applications require low-noise, high-sensitivity, characteristics for imaging of the dark region as well as dynamic range expansion to the bright region, the availability of a low-noise, high-sensitivity pixel device is particularly important. In this dissertation, a dual-conversion-gain (DCG) pixel architecture was proposed; this architecture increases the signal to noise ratio (SNR) and the dynamic range of CMOS image sensors at both the low and high illumination ends. The dual conversion gain pixel improves the dynamic range by changing the conversion gain based on the illumination level without increasing artifacts or increasing the imaging readout noise floor. A MOSFET is used to modulate the capacitance of the charge sensing node. Under high light illumination conditions, a low conversion gain is used to achieve higher full well capacity and wider dynamic range. Under low light conditions, a high conversion gain is enabled to lower the readout noise and achieve excellent low light performance. A sensor prototype using the new pixel architecture with 5.6μm pixel pitch was designed and fabricated using Micron Technology’s 130nm 3-metal and 2-poly silicon process. The periphery circuitries were designed to readout the pixel and support the pixel characterization needs. The pixel design, readout timing, and operation voltage were optimized. A detail sensor characterization was performed; a 127μV/e was achieved for the high conversion gain mode and 30.8μV/e for the low conversion gain mode. Characterization results confirm that a 42ke linear full well was achieved for the low conversion gain mode and 10.5ke for the high conversion gain mode. An average 2.1e readout noise was measured for the high conversion gain mode and 8.6e for the low conversion gain mode. The total sensor dynamic range was extended to 86dB by combining the two modes of operation with a 46.2dB maximum SNR. Several images were taken by the prototype sensor under different illumination levels. The simple processed color images show the clear advantage of the high conversion gain mode for the low light imaging

    Miniature high dynamic range time-resolved CMOS SPAD image sensors

    Get PDF
    Since their integration in complementary metal oxide (CMOS) semiconductor technology in 2003, single photon avalanche diodes (SPADs) have inspired a new era of low cost high integration quantum-level image sensors. Their unique feature of discerning single photon detections, their ability to retain temporal information on every collected photon and their amenability to high speed image sensor architectures makes them prime candidates for low light and time-resolved applications. From the biomedical field of fluorescence lifetime imaging microscopy (FLIM) to extreme physical phenomena such as quantum entanglement, all the way to time of flight (ToF) consumer applications such as gesture recognition and more recently automotive light detection and ranging (LIDAR), huge steps in detector and sensor architectures have been made to address the design challenges of pixel sensitivity and functionality trade-off, scalability and handling of large data rates. The goal of this research is to explore the hypothesis that given the state of the art CMOS nodes and fabrication technologies, it is possible to design miniature SPAD image sensors for time-resolved applications with a small pixel pitch while maintaining both sensitivity and built -in functionality. Three key approaches are pursued to that purpose: leveraging the innate area reduction of logic gates and finer design rules of advanced CMOS nodes to balance the pixel’s fill factor and processing capability, smarter pixel designs with configurable functionality and novel system architectures that lift the processing burden off the pixel array and mediate data flow. Two pathfinder SPAD image sensors were designed and fabricated: a 96 × 40 planar front side illuminated (FSI) sensor with 66% fill factor at 8.25μm pixel pitch in an industrialised 40nm process and a 128 × 120 3D-stacked backside illuminated (BSI) sensor with 45% fill factor at 7.83μm pixel pitch. Both designs rely on a digital, configurable, 12-bit ripple counter pixel allowing for time-gated shot noise limited photon counting. The FSI sensor was operated as a quanta image sensor (QIS) achieving an extended dynamic range in excess of 100dB, utilising triple exposure windows and in-pixel data compression which reduces data rates by a factor of 3.75×. The stacked sensor is the first demonstration of a wafer scale SPAD imaging array with a 1-to-1 hybrid bond connection. Characterisation results of the detector and sensor performance are presented. Two other time-resolved 3D-stacked BSI SPAD image sensor architectures are proposed. The first is a fully integrated 5-wire interface system on chip (SoC), with built-in power management and off-focal plane data processing and storage for high dynamic range as well as autonomous video rate operation. Preliminary images and bring-up results of the fabricated 2mm² sensor are shown. The second is a highly configurable design capable of simultaneous multi-bit oversampled imaging and programmable region of interest (ROI) time correlated single photon counting (TCSPC) with on-chip histogram generation. The 6.48μm pitch array has been submitted for fabrication. In-depth design details of both architectures are discussed

    Low-power CMOS digital-pixel Imagers for high-speed uncooled PbSe IR applications

    Get PDF
    This PhD dissertation describes the research and development of a new low-cost medium wavelength infrared MWIR monolithic imager technology for high-speed uncooled industrial applications. It takes the baton on the latest technological advances in the field of vapour phase deposition (VPD) PbSe-based medium wavelength IR (MWIR) detection accomplished by the industrial partner NIT S.L., adding fundamental knowledge on the investigation of novel VLSI analog and mixed-signal design techniques at circuit and system levels for the development of the readout integrated device attached to the detector. The work supports on the hypothesis that, by the use of the preceding design techniques, current standard inexpensive CMOS technologies fulfill all operational requirements of the VPD PbSe detector in terms of connectivity, reliability, functionality and scalability to integrate the device. The resulting monolithic PbSe-CMOS camera must consume very low power, operate at kHz frequencies, exhibit good uniformity and fit the CMOS read-out active pixels in the compact pitch of the focal plane, all while addressing the particular characteristics of the MWIR detector: high dark-to-signal ratios, large input parasitic capacitance values and remarkable mismatching in PbSe integration. In order to achieve these demands, this thesis proposes null inter-pixel crosstalk vision sensor architectures based on a digital-only focal plane array (FPA) of configurable pixel sensors. Each digital pixel sensor (DPS) cell is equipped with fast communication modules, self-biasing, offset cancellation, analog-to-digital converter (ADC) and fixed pattern noise (FPN) correction. In-pixel power consumption is minimized by the use of comprehensive MOSFET subthreshold operation. The main aim is to potentiate the integration of PbSe-based infra-red (IR)-image sensing technologies so as to widen its use, not only in distinct scenarios, but also at different stages of PbSe-CMOS integration maturity. For this purpose, we posit to investigate a comprehensive set of functional blocks distributed in two parallel approaches: • Frame-based “Smart” MWIR imaging based on new DPS circuit topologies with gain and offset FPN correction capabilities. This research line exploits the detector pitch to offer fully-digital programmability at pixel level and complete functionality with input parasitic capacitance compensation and internal frame memory. • Frame-free “Compact”-pitch MWIR vision based on a novel DPS lossless analog integrator and configurable temporal difference, combined with asynchronous communication protocols inside the focal plane. This strategy is conceived to allow extensive pitch compaction and readout speed increase by the suppression of in-pixel digital filtering, and the use of dynamic bandwidth allocation in each pixel of the FPA. In order make the electrical validation of first prototypes independent of the expensive PbSe deposition processes at wafer level, investigation is extended as well to the development of affordable sensor emulation strategies and integrated test platforms specifically oriented to image read-out integrated circuits. DPS cells, imagers and test chips have been fabricated and characterized in standard 0.15μm 1P6M, 0.35μm 2P4M and 2.5μm 2P1M CMOS technologies, all as part of research projects with industrial partnership. The research has led to the first high-speed uncooled frame-based IR quantum imager monolithically fabricated in a standard VLSI CMOS technology, and has given rise to the Tachyon series [1], a new line of commercial IR cameras used in real-time industrial, environmental and transportation control systems. The frame-free architectures investigated in this work represent a firm step forward to push further pixel pitch and system bandwidth up to the limits imposed by the evolving PbSe detector in future generations of the device.La present tesi doctoral descriu la recerca i el desenvolupament d'una nova tecnologia monolítica d'imatgeria infraroja de longitud d'ona mitja (MWIR), no refrigerada i de baix cost, per a usos industrials d'alta velocitat. El treball pren el relleu dels últims avenços assolits pel soci industrial NIT S.L. en el camp dels detectors MWIR de PbSe depositats en fase vapor (VPD), afegint-hi coneixement fonamental en la investigació de noves tècniques de disseny de circuits VLSI analògics i mixtes pel desenvolupament del dispositiu integrat de lectura unit al detector pixelat. Es parteix de la hipòtesi que, mitjançant l'ús de les esmentades tècniques de disseny, les tecnologies CMOS estàndard satisfan tots els requeriments operacionals del detector VPD PbSe respecte a connectivitat, fiabilitat, funcionalitat i escalabilitat per integrar de forma econòmica el dispositiu. La càmera PbSe-CMOS resultant ha de consumir molt baixa potència, operar a freqüències de kHz, exhibir bona uniformitat, i encabir els píxels actius CMOS de lectura en el pitch compacte del pla focal de la imatge, tot atenent a les particulars característiques del detector: altes relacions de corrent d'obscuritat a senyal, elevats valors de capacitat paràsita a l'entrada i dispersions importants en el procés de fabricació. Amb la finalitat de complir amb els requisits previs, es proposen arquitectures de sensors de visió de molt baix acoblament interpíxel basades en l'ús d'una matriu de pla focal (FPA) de píxels actius exclusivament digitals. Cada píxel sensor digital (DPS) està equipat amb mòduls de comunicació d'alta velocitat, autopolarització, cancel·lació de l'offset, conversió analògica-digital (ADC) i correcció del soroll de patró fixe (FPN). El consum en cada cel·la es minimitza fent un ús exhaustiu del MOSFET operant en subllindar. L'objectiu últim és potenciar la integració de les tecnologies de sensat d'imatge infraroja (IR) basades en PbSe per expandir-ne el seu ús, no només a diferents escenaris, sinó també en diferents estadis de maduresa de la integració PbSe-CMOS. En aquest sentit, es proposa investigar un conjunt complet de blocs funcionals distribuïts en dos enfocs paral·lels: - Dispositius d'imatgeria MWIR "Smart" basats en frames utilitzant noves topologies de circuit DPS amb correcció de l'FPN en guany i offset. Aquesta línia de recerca exprimeix el pitch del detector per oferir una programabilitat completament digital a nivell de píxel i plena funcionalitat amb compensació de la capacitat paràsita d'entrada i memòria interna de fotograma. - Dispositius de visió MWIR "Compact"-pitch "frame-free" en base a un novedós esquema d'integració analògica en el DPS i diferenciació temporal configurable, combinats amb protocols de comunicació asíncrons dins del pla focal. Aquesta estratègia es concep per permetre una alta compactació del pitch i un increment de la velocitat de lectura, mitjançant la supressió del filtrat digital intern i l'assignació dinàmica de l'ample de banda a cada píxel de l'FPA. Per tal d'independitzar la validació elèctrica dels primers prototips respecte a costosos processos de deposició del PbSe sensor a nivell d'oblia, la recerca s'amplia també al desenvolupament de noves estratègies d'emulació del detector d'IR i plataformes de test integrades especialment orientades a circuits integrats de lectura d'imatge. Cel·les DPS, dispositius d'imatge i xips de test s'han fabricat i caracteritzat, respectivament, en tecnologies CMOS estàndard 0.15 micres 1P6M, 0.35 micres 2P4M i 2.5 micres 2P1M, tots dins el marc de projectes de recerca amb socis industrials. Aquest treball ha conduït a la fabricació del primer dispositiu quàntic d'imatgeria IR d'alta velocitat, no refrigerat, basat en frames, i monolíticament fabricat en tecnologia VLSI CMOS estàndard, i ha donat lloc a Tachyon, una nova línia de càmeres IR comercials emprades en sistemes de control industrial, mediambiental i de transport en temps real.Postprint (published version

    CMOS SPAD-based image sensor for single photon counting and time of flight imaging

    Get PDF
    The facility to capture the arrival of a single photon, is the fundamental limit to the detection of quantised electromagnetic radiation. An image sensor capable of capturing a picture with this ultimate optical and temporal precision is the pinnacle of photo-sensing. The creation of high spatial resolution, single photon sensitive, and time-resolved image sensors in complementary metal oxide semiconductor (CMOS) technology offers numerous benefits in a wide field of applications. These CMOS devices will be suitable to replace high sensitivity charge-coupled device (CCD) technology (electron-multiplied or electron bombarded) with significantly lower cost and comparable performance in low light or high speed scenarios. For example, with temporal resolution in the order of nano and picoseconds, detailed three-dimensional (3D) pictures can be formed by measuring the time of flight (TOF) of a light pulse. High frame rate imaging of single photons can yield new capabilities in super-resolution microscopy. Also, the imaging of quantum effects such as the entanglement of photons may be realised. The goal of this research project is the development of such an image sensor by exploiting single photon avalanche diodes (SPAD) in advanced imaging-specific 130nm front side illuminated (FSI) CMOS technology. SPADs have three key combined advantages over other imaging technologies: single photon sensitivity, picosecond temporal resolution and the facility to be integrated in standard CMOS technology. Analogue techniques are employed to create an efficient and compact imager that is scalable to mega-pixel arrays. A SPAD-based image sensor is described with 320 by 240 pixels at a pitch of 8μm and an optical efficiency or fill-factor of 26.8%. Each pixel comprises a SPAD with a hybrid analogue counting and memory circuit that makes novel use of a low-power charge transfer amplifier. Global shutter single photon counting images are captured. These exhibit photon shot noise limited statistics with unprecedented low input-referred noise at an equivalent of 0.06 electrons. The CMOS image sensor (CIS) trends of shrinking pixels, increasing array sizes, decreasing read noise, fast readout and oversampled image formation are projected towards the formation of binary single photon imagers or quanta image sensors (QIS). In a binary digital image capture mode, the image sensor offers a look-ahead to the properties and performance of future QISs with 20,000 binary frames per second readout with a bit error rate of 1.7 x 10-3. The bit density, or cumulative binary intensity, against exposure performance of this image sensor is in the shape of the famous Hurter and Driffield densitometry curves of photographic film. Oversampled time-gated binary image capture is demonstrated, capturing 3D TOF images with 3.8cm precision in a 60cm range

    On-Chip Integrated Functional Near Infra-Red Spectroscopy (fNIRS) Photoreceiver for Portable Brain Imaging

    Get PDF
    RÉSUMÉ L'imagerie cérébrale fonctionnelle utilisant la Spectroscopie Fonctionnelle Proche-Infrarouge (SFPI) propose un outil portatif et non invasif de surveillance de l'oxygénation du sang. SFPI est une technique de haute résolution temporelle non invasive, sûr, peu intrusive en temps réel et pour l'imagerie cérébrale à long terme. Il permet de détecter des signaux hémodynamiques à la fois rapides et neuronaux ou lents. Outre les avantages importants des systèmes SFPI, ils souffrent encore de quelques inconvénients, notamment d’une faible résolution spatiale, d’un bruit de niveau modérément élevé et d’une grande sensibilité au mouvement. Afin de surmonter les limites des systèmes actuellement disponibles de SFPI non-portables, dans cette thèse, nous en avons introduit une nouvelle de faible puissance, miniaturisée sur une puce photodétecteur frontal destinée à des systèmes de SFPI portables. Elle contient du silicium photodiode à avalanche (SiAPD), un amplificateur de transimpédance (TIA), et « Quench-Reset », circuits mis en oeuvre en utilisant les technologies CMOS standards pour fonctionner dans les deux modes : linéaire et Geiger. Ainsi, elle peut être appliquée pour les deux fNIRS : en onde continue (CW- SFPI) et pour des applications de comptage de photon unique. Plusieurs SiAPDs ont été mises en oeuvre dans de nouvelles structures et formes (rectangulaires, octogonales, double APDs, imbriquées, netted, quadratiques et hexadecagonal) en utilisant différentes techniques de prévention de la dégradation de bord prématurée. Les principales caractéristiques des SiAPDs sont validées et l'impact de chaque paramètre ainsi que les simulateurs de l'appareil (TCAD, COMSOL, etc) ont été étudiés sur la base de la simulation et de mesure des résultats. Proposées SiAPDs techniques d'exposition avec un gain de grande avalanche, tension faible ventilation et une grande efficacité de détection des photons dans plus de faibles taux de comptage sombres. Trois nouveaux produits à haut gain, bande passante (GBW) et à faible bruit TIA sont introduits basés sur le concept de gain distribué, d’amplificateur logarithmique et sur le rejet automatique du bruit pour être appliqué en mode de fonctionnement linéaire. Le TIA proposé offre une faible consommation, un gain de haute transimpédance, une bande passante ajustable et un très faible bruit d'entrée et de sortie. Le nouveau circuit mixte trempe-reset (MQC) et un MQC contrôlable (CMQC) frontaux offrent une faible puissance, une haute vitesse de comptage de photons avec un commandable de temps de hold-off et temps de réinitialiser. La première intégration sur puce de SiAPDs avec TIA et Photon circuit de comptage a été démontrée et montre une amélioration de l'efficacité de la photodétection, spécialement en ce qui concerne la sensibilité, la consommation d'énergie et le rapport signal sur bruit.----------ABSTRACT Optical brain imaging using functional near infra-red spectroscopy (fNIRS) offers a direct and noninvasive tool for monitoring of blood oxygenation. fNIRS is a noninvasive, safe, minimally intrusive, and high temporal-resolution technique for real-time and long-term brain imaging. It allows detecting both fast-neuronal and slow-hemodynamic signals. Besides the significant advantages of fNIRS systems, they still suffer from few drawbacks including low spatial- resolution, moderately high-level noise and high-sensitivity to movement. In order to overcome the limitations of currently available non-portable fNIRS systems, we have introduced a new low-power, miniaturized on-chip photodetector front-end intended for portable fNIRS systems. It includes silicon avalanche photodiode (SiAPD), Transimpedance amplifier (TIA), and Quench- Reset circuitry implemented using standard CMOS technologies to operate in both linear and Geiger modes. So it can be applied for both continuous-wave fNIRS (CW-fNIRS) and also single-photon counting applications. Several SiAPDs have been implemented in novel structures and shapes (Rectangular, Octagonal, Dual, Nested, Netted, Quadratic and Hexadecagonal) using different premature edge breakdown prevention techniques. The main characteristics of the SiAPDs are validated and the impact of each parameter and the device simulators (TCAD, COMSOL, etc.) have been studied based on the simulation and measurement results. Proposed techniques exhibit SiAPDs with high avalanche-gain (up to 119), low breakdown-voltage (around 12V) and high photon-detection efficiency (up to 72% in NIR region) in additional to a low dark- count rate (down to 30Hz at 1V excess bias voltage). Three new high gain-bandwidth product (GBW) and low-noise TIAs are introduced and implemented based on distributed-gain concept, logarithmic-amplification and automatic noise-rejection and have been applied in linear-mode of operation. The implemented TIAs offer a power-consumption around 0.4 mW, transimpedance gain of 169 dBΩ, and input-output current/voltage noises in fA/pV range accompanied with ability to tune the gain, bandwidth and power-consumption in a wide range. The implemented mixed quench-reset circuit (MQC) and controllable MQC (CMQC) front-ends offer a quenchtime of 10ns, a maximum power-consumption of 0.4 mW, with a controllable hold-off and resettimes. The on-chip integration of SiAPDs with TIA and photon-counting circuitries has been demonstrated showing improvement of the photodetection-efficiency, specially regarding to the sensitivity, power-consumption and signal-to-noise ratio (SNR) characteristics
    corecore