3,382 research outputs found

    Optimizing condition numbers

    Get PDF
    In this paper we study the problem of minimizing condition numbers over a compact convex subset of the cone of symmetric positive semidefinite n×nn\times n matrices. We show that the condition number is a Clarke regular strongly pseudoconvex function. We prove that a global solution of the problem can be approximated by an exact or an inexact solution of a nonsmooth convex program. This asymptotic analysis provides a valuable tool for designing an implementable algorithm for solving the problem of minimizing condition numbers

    KKT reformulation and necessary conditions for optimality in nonsmooth bilevel optimization

    No full text
    For a long time, the bilevel programming problem has essentially been considered as a special case of mathematical programs with equilibrium constraints (MPECs), in particular when the so-called KKT reformulation is in question. Recently though, this widespread believe was shown to be false in general. In this paper, other aspects of the difference between both problems are revealed as we consider the KKT approach for the nonsmooth bilevel program. It turns out that the new inclusion (constraint) which appears as a consequence of the partial subdifferential of the lower-level Lagrangian (PSLLL) places the KKT reformulation of the nonsmooth bilevel program in a new class of mathematical program with both set-valued and complementarity constraints. While highlighting some new features of this problem, we attempt here to establish close links with the standard optimistic bilevel program. Moreover, we discuss possible natural extensions for C-, M-, and S-stationarity concepts. Most of the results rely on a coderivative estimate for the PSLLL that we also provide in this paper

    Lateral fligh control design for a highly flexible aircraft using a nonsmooth method

    Get PDF
    This paper describes a nonsmooth optimization technique for designing a lateral flight control law for a highly flexible aircraft. Flexible modes and high-dimensional models pose a major challenge to modern control design tools. We show that the nonsmooth approach offers potent and flexible alternatives in this difficult context. More specifically, the proposed technique is used to achieve a mix of frequency domain as well as time domain requirements for a set of different flight conditions

    Proximal bundle method for contact shape optimization problem

    Get PDF
    From the mathematical point of view, the contact shape optimization is a problem of nonlinear optimization with a specific structure, which can be exploited in its solution. In this paper, we show how to overcome the difficulties related to the nonsmooth cost function by using the proximal bundle methods. We describe all steps of the solution, including linearization, construction of a descent direction, line search, stopping criterion, etc. To illustrate the performance of the presented algorithm, we solve a shape optimization problem associated with the discretized two-dimensional contact problem with Coulomb's friction
    corecore