31,102 research outputs found

    FIJICLIM description and users guide

    Get PDF
    The FIJICLIM prototype is based on PACCLIM which was developed by the International Global Change Institute (IGCI) as part of the Pacific Islands Climate Change Assistance Programme (PICCAP) executed by the South Pacific Regional Environment Programme (SPREP). Both FIJICLIM and PACCLIM build directly on a comparable model development for New Zealand, known as the CLIMPACTS system (Kenny et al., 1995, 1999; Warrick et al., 1996, 1999). The development of CLIMPACTS has been funded by the Foundation for Research Science and Technology since 1993. Its core components, which include a graphic user interface (GUI), a customised geographic information system (GIS), and data compression routines, have provided the basis for the development of FIJICLIM. The development of FIJICLIM is complementary to similar developments that have evolved from CLIMPACTS, for Bangladesh (BDCLIM), Australia (OZCLIM), and for training in climate change V&A assessment (VANDACLIM)

    Capacity-building activities related to climate change vulnerability and adaptation assessment and economic valuation for Fiji

    Get PDF
    The Terms of Reference for this work specified three objectives to the Fiji component: Objective 1a: to provide a prototype FIJICLIM model (covered under PICCAP funding) Objective 1b: to provide training and transfer of FIJICLIM Objective 1c: to present and evaluate World Bank study findings and to identify future directions for development and use of FIJICLIM (2-day workshop) Proceedings of the training course and workshop were prepared by the Fiji Department of Environment. The summaries from these proceedings reflect a very high degree of success with the contracted activities

    Discovery and Validation of Kepler-452b: A 1.6-Re Super Earth Exoplanet in the Habitable Zone of a G2 Star

    Get PDF
    We report on the discovery and validation of Kepler-452b, a transiting planet identified by a search through the 4 years of data collected by NASA's Kepler Mission. This possibly rocky 1.630.20+0.23^{+0.23}_{-0.20} R_\oplus planet orbits its G2 host star every 384.8430.012+0.007^{+0.007}_{0.012} days, the longest orbital period for a small (Rp_p < 2 R_\oplus) transiting exoplanet to date. The likelihood that this planet has a rocky composition lies between 49% and 62%. The star has an effective temperature of 5757±\pm85 K and a log g of 4.32±\pm0.09. At a mean orbital separation of 1.0460.015+0.019^{+0.019}_{-0.015} AU, this small planet is well within the optimistic habitable zone of its star (recent Venus/early Mars), experiencing only 10% more flux than Earth receives from the Sun today, and slightly outside the conservative habitable zone (runaway greenhouse/maximum greenhouse). The star is slightly larger and older than the Sun, with a present radius of 1.110.09+0.15^{+0.15}_{-0.09} R_\odot and an estimated age of 6 Gyr. Thus, Kepler-452b has likely always been in the habitable zone and should remain there for another 3 Gyr.Comment: 19 pages, 16 figure

    Four futures for energy markets and climate change

    Get PDF
    Future developments in energy and climate are highly uncertain. In order to deal with these uncertainties, we developed four long-term scenarios based on the recently published economic scenarios Four Futures of Europe: STRONG EUROPE, GLOBAL ECONOMY, TRANSATLANTIC MARKET and REGIONAL COMMUNITIES. In this study, we explore the next four decades. Although the report focuses on Europe, global aspects of energy use and climate change play a significant role. The next decades, global reserves of oil and natural gas will likely be sufficient to meet the growing demand. Therefore, there is no need to worry about a looming depletion of natural energy resources. The use of fossil energy carriers will, however, affect climate because of the emissions of greenhouse gasses. In order to mitigate global increases of temperature, emissions of greenhouse gasses should be reduced. Developing countries should contribute to that effort. On the one hand they will be major emitters in the near future, on the other hand they have the low-cost abatement options.

    INFECTIOUS DISEASE, DEVELOPMENT, AND CLIMATE CHANGE: A SCENARIO ANALYSIS

    Get PDF
    We study the effects of development and climate change on infectious disease in Sub-Saharan Africa. Infant mortality and infectious disease are close related, but there are better data for the former. In an international cross-section, per capita income, literacy, and absolute poverty significantly affect infant mortality. We use scenarios of these three determinants, and of climate change to project the future incidence of malaria, assuming it to change proportionally to infant mortality. Malaria deaths will first increase, because of population growth and climate change, but then fall, because of development. This pattern is robust to the choice of scenario, parameters, and starting conditions; and it holds for diarrhoea, schistosomiasis, and dengue fever as well. However, the time and level of the mortality peak is very sensitive to assumptions. Climate change is important in the medium term, but dominated in the long term by development. As climate can only be changed with a substantial delay, development is the preferred strategy to reduced infectious diseases, even if that is exacerbated by climate change.Development, infectious disease, climate change, Sub-Saharan Africa, malaria
    corecore