22 research outputs found

    Jitter-Tolerance and Blocker-Tolerance of Delta-Sigma Analog-to-Digital Converters for Saw-Less Multi-Standard Receivers

    Get PDF
    The quest for multi-standard and software-defined radio (SDR) receivers calls for high flexibility in the receiver building-blocks so that to accommodate several wireless services using a single receiver chain in mobile handsets. A potential approach to achieve flexibility in the receiver is to move the analog-to-digital converter (ADC) closer to the antenna so that to exploit the enormous advances in digital signal processing, in terms of technology scaling, speed, and programmability. In this context, continuous-time (CT) delta-sigma (Ī”Ę©) ADCs show up as an attractive option. CT Ī”Ę© ADCs have gained significant attention in wideband receivers, owing to their amenability to operate at a higher-speed with lower power consumption compared to discrete-time (DT) implementations, inherent anti-aliasing, and robustness to sampling errors in the loop quantizer. However, as the ADC moves closer to the antenna, several blockers and interferers are present at the ADC input. Thus, it is important to investigate the sensitivities of CT Ī”Ę© ADCs to out-of-band (OOB) blockers and find the design considerations and solutions needed to maintain the performance of CT Ī”Ę© modulators in presence of OOB blockers. Also, CT Ī”Ę© modulators suffer from a critical limitation due to their high sensitivity to the clock-jitter in the feedback digital-to-analog converter (DAC) sampling-clock. In this context, the research work presented in this thesis is divided into two main parts. First, the effects of OOB blockers on the performance of CT Ī”Ę© modulators are investigated and analyzed through a detailed study. A potential solution is proposed to alleviate the effect of noise folding caused by intermodulation between OOB blockers and shaped quantization noise at the modulator input stage through current-mode integration. Second, a novel DAC solution that achieves tolerance to pulse-width jitter by spectrally shaping the jitter induced errors is presented. This jitter-tolerant DAC doesnā€™t add extra requirements on the slew-rate or the gain-bandwidth product of the loop filter amplifiers. The proposed DAC was implemented in a 90nm CMOS prototype chip and provided a measured attenuation for in-band jitter induced noise by 26.7dB and in-band DAC noise by 5dB, compared to conventional current-steering DAC, and consumes 719Āµwatts from 1.3V supply

    Low Noise, Jitter Tolerant Continuous-Time Sigma-Delta Modulator

    Get PDF
    The demand for higher data rates in receivers with carrier aggregation (CA) such as LTE, increases the efforts to integrate large number of wireless services into single receiving path, so it needs to digitize the signal in intermediate or high frequencies. It relaxes most of the front-end blocks but makes the design of ADC very challenging. Solving the bottleneck associated with ADC in receiver architecture is a major focus of many ongoing researches. Recently, continuous time Sigma-Delta analog-to-digital converters (ADCs) are getting more attention due to their inherent filtering properties, lower power consumption and wider input bandwidth. But, it suffers from several non-idealities such as clock jitter and ELD which decrease the ADC performance. This dissertation presents two projects that address CT-Ī£Ī” modulator non-idealities. One of the projects is a CT- Ī£Ī” modulator with 10.9 Effective Number of Bits (ENOB) with Gradient Descent (GD) based calibration technique. The GD algorithm is used to extract loop gain transfer function coefficients. A quantization noise reduction technique is then employed to improve the Signal to Quantization Noise Ratio (SQNR) of the modulator using a 7-bit embedded quantizer. An analog fast path feedback topology is proposed which uses an analog differentiator in order to compensate excess loop delay. This approach relaxes the requirements of the amplifier placed in front of the quantizer. The modulator is implemented using a third order loop filter with a feed-forward compensation paths and a 3-bit quantizer in the feedback loop. In order to save power and improve loop linearity a two-stage class-AB amplifier is developed. The prototype modulator is implemented in 0.13Ī¼m CMOS technology, which achieves peak Signal to Noise and Distortion Ratio (SNDR) of 67.5dB while consuming total power of 8.5-mW under a 1.2V supply with an over sampling ratio of 10 at 300MHz sampling frequency. The prototype achieves Walden's Figure of Merit (FoM) of 146fJ/step. The second project addresses clock jitter non-ideality in Continuous Time Sigma Delta modulators (CT- Ī£Ī”M), the modulator suffer from performance degradation due to uncertainty in timing of clock at digital-to-analog converter (DAC). This thesis proposes to split the loop filter into two parts, analog and digital part to reduce the sensitivity of feedback DAC to clock jitter. By using the digital first-order filter after the quantizer, the effect of clock jitter is reduced without changing signal transfer function (STF). On the other hand, as one pole of the loop filter is implemented digitally, the power and area are reduced by minimizing active analog elements. Moreover, having more digital blocks in the loop of CT- Ī£Ī”M makes it less sensitive to process, voltage, and temperature variations. We also propose the use of a single DAC with a current divider to implement feedback coefficients instead of two DACs to decrease area and clock routing. The prototype is implemented in TSMC 40 nm technology and occupies 0.06 mm^2 area; the proposed solution consumes 6.9 mW, and operates at 500 MS/s. In a 10 MHz bandwidth, the measured dynamic range (DR), peak signal-to-noise-ratio (SNR), and peak signal-to-noise and distortion (SNDR) ratios in presence of 4.5 ps RMS clock jitter (0.22% clock period) are 75 dB, 68 dB, and 67 dB, respectively. The proposed structure is 10 dB more tolerant to clock jitter when compared to the conventional Ī£Ī”M design for similar loop filter

    Calibrated Continuous-Time Sigma-Delta Modulators

    Get PDF
    To provide more information mobility, many wireless communication systems such as WCDMA and EDGE in phone systems, bluetooth and WIMAX in communication networks have been recently developed. Recent efforts have been made to build the allin- one next generation device which integrates a large number of wireless services into a single receiving path in order to raise the competitiveness of the device. Among all the receiver architectures, the high-IF receiver presents several unique properties for the next generation receiver by digitalizing the signal at the intermediate frequency around a few hundred MHz. In this architecture, the modulation/demodulation schemes, protocols, equalization, etc., are all determined in a software platform that runs in the digital signal processor (DSP) or FPGA. The specifications for most of front-end building blocks are relaxed, except the analog-to-digital converter (ADC). The requirements of large bandwidth, high operational frequency and high resolution make the design of the ADC very challenging. Solving the bottleneck associated with the high-IF receiver architecture is a major focus of many ongoing research efforts. In this work, a 6th-order bandpass continuous time sigma-delta ADC with measured 68.4dB SNDR at 10MHz bandwidth to accommodate video applications is proposed. Tuned at 200 MHz, the fs/4 architecture employs an 800 MHz clock frequency. By making use of a unique software-based calibration scheme together with the tuning properties of the bandpass filters developed under the umbrella of this project, the ADC performance is optimized automatically to fulfill all requirements for the high-IF architecture. In a separate project, other critical design issues for continuous-time sigma-delta ADCs are addressed, especially the issues related to unit current source mismatches in multi-level DACs as well as excess loop delays that may cause loop instability. The reported solutions are revisited to find more efficient architectures. The aforementioned techniques are used for the design of a 25MHz bandwidth lowpass continuous-time sigma-delta modulator with time-domain two-step 3-bit quantizer and DAC for WiMAX applications. The prototype is designed by employing a level-to-pulse-width modulation (PWM) converter followed by a single-level DAC in the feedback path to translate the typical digital codes into PWM signals with the proposed pulse arrangement. Therefore, the non-linearity issue from current source mismatch in multi-level DACs is prevented. The jitter behavior and timing mismatch issue of the proposed time-based methods are fully analyzed. The measurement results of a chip prototype achieving 67.7dB peak SNDR and 78dB SFDR in 25MHz bandwidth properly demonstrate the design concepts and effectiveness of time-based quantization and feedback. Both continuous-time sigma-delta ADCs were fabricated in mainstream CMOS 0.18um technologies, which are the most popular in today?s consumer electronics industry

    Blocker Tolerant Radio Architectures

    Get PDF
    Future radio platforms have to be inexpensive and deal with a variety of co- existence issues. The technology trend during the last few years is towards system- on-chip (SoC) that is able to process multiple standards re-using most of the digital resources. A major bottle-neck to this approach is the co-existence of these standards operating at different frequency bands that are hitting the receiver front-end. So the current research is focused on the power, area and performance optimization of various circuit building blocks of a radio for current and incoming standards. Firstly, a linearization technique for low noise amplifiers (LNAs) called, Robust Derivative Superposition (RDS) method is proposed. RDS technique is insensitive to Process Voltage and Temperature (P.V.T.) variations and is validated with two low noise transconductance amplifier (LNTA) designs in 0.18Āµm CMOS technology. Measurement results from 5 dies of a resistive terminated LNTA shows that the pro- posed method improves IM3 over 20dB for input power up to -18dBm, and improves IIP_(3) by 10dB. A 2V inductor-less broadband 0.3 to 2.8GHz balun-LNTA employing the proposed RDS linearization technique was designed and measured. It achieves noise figure of 6.5dB, IIP3 of 16.8dBm, and P1dB of 0.5dBm having a power consumption of 14.2mW. The balun LNTA occupies an active area of 0.06mm2. Secondly, the design of two high linearity, inductor-less, broadband LNTAs employing noise and distortion cancellation techniques is presented. Main design issues and the performance trade-offs of the circuits are discussed. In the fully differential architecture, the first LNTA covers 0.1-2GHz bandwidth and achieves a minimum noise figure (NFmin) of 3dB, IIP_(3) of 10dBm and a P_(1dB) of 0dBm while dissipating 30.2mW. The 2^(nd) low power bulk driven LNTA with 16mW power consumption achieves NFmin of 3.4dB, IIP3 of 11dBm and 0.1-3GHz bandwidth. Each LNTA occupy an active area of 0.06mm2 in 45nm CMOS. Thirdly, a continuous-time low-pass āˆ†Ī£ADC equipped with design techniques to provide robustness against loop saturation due to blockers is presented. Loop over- load detection and correction is employed to improve the ADCā€™s tolerance to blockers; a fast overload detector activates the input attenuator, maintaining the ADC in linear operation. To further improve ADCā€™s blocker tolerance, a minimally-invasive integrated low-pass filter that reduces the most critical adjacent/alternate channel blockers is implemented. An ADC prototype is implemented in a 90nm CMOS technology and experimentally it achieves 69dB dynamic range over a 20MHz bandwidth with a sampling frequency of 500MHz and 17.1mW of power consumption. The alternate channel blocker tolerance at the most critical frequency is as high as -5.5dBFS while the conventional feed-forward modulator becomes unstable at -23.5dBFS of blocker power. The proposed blocker rejection techniques are minimally-invasive and take less than 0.3Āµsec to settle after a strong agile blocker appears. Finally, a new radio partitioning methodology that gives robust analog and mixed signal radio development in scaled technology for SoC integration, and the co-design of RF FEM-antenna system is presented. Based on the proposed methodology, a CMOS RF front-end module (FEM) with power amplifier (PA), LNA and transmit/receive switch, co-designed with antenna is implemented. The RF FEM circuit is implemented in a 32nm CMOS technology. Post extracted simulations show a noise figure < 2.5dB, S_(21) of 14dB, IIP3 of 7dBm and P1dB of -8dBm for the receiver. Total power consumption of the receiver is 11.8mW from a 1V supply. On the trans- mitter side, PA achieves peak RF output power of 22.34dBm with peak power added efficiency (PAE) of 65% and PAE of 33% with linearization at -6dB power back off. Simulations show an efficiency of 80% for the miniaturized dipole antenna

    Design Considerations for Wide Bandwidth Continuous-Time Low-Pass Delta-Sigma Analog-to-Digital Converters

    Get PDF
    Continuous-time (CT) delta-sigma (Ī”Ī£) analog-to-digital converters (ADC) have emerged as the popular choice to achieve high resolution and large bandwidth due to their low cost, power efficiency, inherent anti-alias filtering and digital post processing capabilities. This work presents a detailed system-level design methodology for a low-power CT Ī”Ī£ ADC. Design considerations and trade-offs at the system-level are presented. A novel technique to reduce the sensitivity of the proposed ADC to clock jitter-induced feedback charge variations by employing a hybrid digital-to-analog converter (DAC) based on switched-capacitor circuits is also presented. The proposed technique provides a clock jitter tolerance of up to 5ps (rms). The system is implemented using a 5th order active-RC loop filter, 9-level quantizer and DAC, achieving 74dB SNDR over 20MHz signal bandwidth, at 400MHz sampling frequency in a 1.2V, 90 nm CMOS technology. A novel technique to improve the linearity of the feedback digital-to-analog converters (DAC) in a target 11-bits resolution, 100MHz bandwidth, 2GHz sampling frequency CT Ī”Ī£ ADC is also presented in this work. DAC linearity is improved by combining dynamic element matching and automatic background calibration to achieve up to 18dB improvement in the SNR. Transistor-level circuit implementation of the proposed technique was done in a 1.8V, 0.18Ī¼m BiCMOS process

    Robust sigma delta converters : and their application in low-power highly-digitized flexible receivers

    Get PDF
    In wireless communication industry, the convergence of stand-alone, single application transceiver ICā€™s into scalable, programmable and platform based transceiver ICs, has led to the possibility to create sophisticated mobile devices within a limited volume. These multi-standard (multi-mode), MIMO, SDR and cognitive radios, ask for more adaptability and flexibility on every abstraction level of the transceiver. The adaptability and flexibility of the receive paths require a digitized receiver architecture in which most of the adaptability and flexibility is shifted in the digital domain. This trend to ask for more adaptability and flexibility, but also more performance, higher efficiency and an increasing functionality per volume, has a major impact on the IP blocks such systems are built with. At the same time the increasing requirement for more digital processing in the same volume and for the same power has led to mainstream CMOS feature size scaling, leading to smaller, faster and more efficient transistors, optimized to increase processing efficiency per volume (smaller area, lower power consumption, faster digital processing). As wireless receivers is a comparably small market compared to digital processors, the receivers also have to be designed in a digitally optimized technology, as the processor and transceiver are on the same chip to reduce device volume. This asks for a generalized approach, which maps application requirements of complex systems (such as wireless receivers) on the advantages these digitally optimized technologies bring. First, the application trends are gathered in five quality indicators being: (algorithmic) accuracy, robustness, flexibility, efficiency, and emission, of which the last one is not further analyzed in this thesis. Secondly, using the quality indicators, it is identified that by introducing (or increasing) digitization at every abstraction level of a system, the advantages of modern digitally optimized technologies can be exploited. For a system on a chip, these abstraction levels are: system/application level, analog IP architecture level, circuit topology level and layout level. In this thesis, the quality indicators together with the digitization at different abstraction levels are applied to SĀæ modulators. SĀæ modulator performance properties are categorized into the proposed quality indicators. Next, it is identified what determines the accuracy, robustness, flexibility and efficiency of a SĀæ modulator. Important modulator performance parameters, design parameter relations, and performance-cost relations are derived. Finally, several implementations are presented, which are designed using the found relations. At least one implementation example is shown for each level of digitization. At system level, a flexible (N)ZIF receiver architecture is digitized by shifting the ADC closer to the antenna, reducing the amount of analog signal conditioning required in front of the ADC, and shifting the re-configurability of such a receiver into the digital domain as much as possible. Being closer to the antenna, and because of the increased receiver flexibility, a high performance, multi-mode ADC is required. In this thesis, it is proven that such multi-mode ADCs can be made at low area and power consumption. At analog IP architecture level, a smarter SĀæ modulator architecture is found, which combines the advantages of 1-bit and multi-bit modulators. The analog loop filter is partly digitized, and analog circuit blocks are replaced by a digital filter, leading to an area and power efficient design, which above all is very portable, and has the potential to become a good candidate for the ADC in multimode receivers. At circuit and layout level, analog circuits are designed in the same way as digital circuits are. Analog IP blocks are split up in analog unit cells, which are put in a library. For each analog unit cell, a p-cell layout view is created. Once such a library is available, different IP blocks can be created using the same unit cells and using the automatic routing tools normally used for digital circuits. The library of unit cells can be ported to a next technology very quickly, as the unit cells are very simple circuits, increasing portability of IP blocks made with these unit cells. In this thesis, several modulators are presented that are designed using this digital design methodology. A high clock frequency in the giga-hertz range is used to test technology speed. The presented modulators have a small area and low power consumption. A modulator is ported from a 65nm to a 45nm technology in one month without making changes to the unit cells, or IP architecture, proving that this design methodology leads to very portable designs. The generalized system property categorization in quality indicators, and the digitization at different levels of system design, is named the digital design methodology. In this thesis this methodology is successfully applied to SĀæ modulators, leading to high quality, mixed-signal SĀæ modulator IP, which is more accurate, more robust, more flexible and/or more efficient

    Design of Analog & Mixed Signal Circuits in Continuous-Time Sigma-Delta Modulators for System-on-Chip applications

    Get PDF
    Software-defined radio receivers (SDRs) have become popular to accommodate multi-standard wireless services using a single chip-set solution in mobile telecommunication systems. In SDRs, the signal is down-converted to an intermediate frequency and then digitalized. This approach relaxes the specifications for most of the analog front-end building blocks by performing most of the signal processing in the digital domain. However, since the analog-to-digital converter (ADC) is located as close as possible to the antenna in SDR architectures, the ADC specification requirements are very stringent because a large amount of interference signals are present at the ADC input due to the removal of filtering blocks, which particularly affects the dynamic range (DR) specification. Sigma-delta (Ī£Ī”) ADCs have several benefits such as low implementation cost, especially when the architecture contains mostly digital circuits. Furthermore, continuous-time (CT) Ī£Ī” ADCs allow elimination of the antiā€aliasing filter because input signals are sampled after the integrator. The bandwidth requirements for the amplifiers in CT Ī£Ī” ADCs can be relaxed due to the continuous operation without stringing settling time requirements. Therefore, they are suitable for highā€speed and lowā€power applications. In addition, CT Ī£Ī” ADCs achieve high resolution due to the Ī£Ī” modulatorā€™s noise shaping property. However, the in-band quantization noise is shaped by the analog loop filter and the distortions of the analog loop filter directly affect the system output. Hence, highly linear low-noise loop filters are required for high-performance Ī£Ī” modulators. The first task in this research focused on using CMOS 90 nm technology to design and fabricate a 5^(TH)ā€“order active-RC loop filter with a cutoff frequency of 20 MHz for a low pass (LP) CT Ī£Ī” modulator. The active-RC topology was selected because of the high DR requirement in SDR applications. The amplifiers in the first stage of the loop filter were implemented with linearization techniques employing anti-parallel cancellation and source degeneration in the second stage of the amplifiers. These techniques improve the third-order intermodulation (IM3) by approximately 10 dB; while noise, area, and power consumption do not increase by more than 10%. Second, a current-mode adder-flash ADC was also fabricated as part of a LP CT Ī£Ī” modulator. The new current-mode operation developed through this research makes possible a 53% power reduction. The new technology also lessens existing problems associated with voltage-mode flash ADCs, which are mainly related to voltage headroom restrictions, speed of operation, offsets, and power efficiency of the latches. The core of the current-mode adder-flash ADC was fabricated in CMOS 90 nm technology with 1.2 V supply; it dissipates 3.34 mW while operating at 1.48 GHz and consumes a die area of 0.0276 mm^(2). System-on chip (SoC) solutions are becoming more popular in mobile telecommunication systems to improve the portability and competitiveness of products. Since the analog/RF and digital blocks often share the same external power supply in SoC solutions, the on-chip generation of clean power supplies is necessary to avoid system performance degradation due to supply noises. Finally, the critical design issues for external capacitor-less low drop-out (LDO) regulators for SoC applications are addressed in this dissertation, especially the challenges related to power supply rejection at high frequencies as well as loop stability and transient response. The paths of the power supply noise to the LDO output were analyzed, and a power supply noise cancellation circuit was developed. The power supply rejection (PSR) performance was improved by using a replica circuit that tracks the main supply noise under process-voltage-temperature variations and all operating conditions. Fabricated in a 0.18 Ī¼m CMOS technology with 1.8 V supply, the entire proposed LDO consumes 55 Ī¼A of quiescent current while in standby operation, and it has a drop-out voltage of 200 mV when providing 50 mA to the load. Its active core chip area is 0.14 mm2. Compared to a conventional uncompensated LDO, the proposed architecture presents a PSR improvement of 34 dB and 25 dB at 1 MHz and 4 MHz, respectively

    Low Power Continuous-time Bandpass Delta-Sigma Modulators.

    Full text link
    Low power techniques for continuous-time bandpass delta-sigma modulators (CTBPDSMs) are introduced. First, a 800MS/s low power 4th-order CTBPDSM with 24MHz bandwidth at 200MHz IF is presented. A novel power-efficient resonator with a single amplifier is used in the loopfilter. A single op-amp resonator makes use of positive feedback to increase the quality factor. Also, a new 4th-order architecture is introduced for system simplicity and low power. Low power consumption and a simple modulator structure are achieved by reducing the number of feedback DACs. This modulator achieves 58dB SNDR, and the total power consumption is 12mW. Second, a 6th-order CTBPDSM with duty cycle controlled DACs is presented. This prototype introduces new architecture for low power consumption and other important features. Duty cycle control enables the use of a single DAC per resonator without degrading the signal transfer function (STF), and helps to lower power consumption, low area, and thermal noise. This ADC provides input signal filtering, and increases the dynamic range by reducing the peaking in the STF. Furthermore, the center frequency is tunable so that the CTBPDSM is more useful in the receiver. The prototype second modulator achieves 69dB SNDR, and consumes 35mW, demonstrating the best FoM of 320fJ/conv.-step for CTBPDSMs using active resonators. The techniques introduced in this research help CTBPDSMs have good power efficiency compared with the other kinds of ADCs, and make the implement of a software-defined radio architecture easier which is appropriate for the future multiple standard radio receivers without a power penalty.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/98001/1/hichae_1.pd

    Low Power Analog to Digital Converters in Advanced CMOS Technology Nodes

    Get PDF
    The dissertation presents system and circuit solutions to improve the power efficiency and address high-speed design issues of ADCs in advanced CMOS technologies. For image sensor applications, a high-performance digitizer prototype based on column-parallel single-slope ADC (SS-ADC) topology for readout of a back-illuminated 3D-stacked CMOS image sensor is presented. To address the high power consumption issue in high-speed digital counters, a passing window (PW) based hybrid counter topology is proposed. To address the high column FPN under bright illumination conditions, a double auto-zeroing (AZ) scheme is proposed. The proposed techniques are experimentally verified in a prototype chip designed and fabricated in the TSMC 40 nm low-power CMOS process. The PW technique saves 52.8% of power consumption in the hybrid digital counters. Dark/bright column fixed pattern noise (FPN) of 0.0024%/0.028% is achieved employing the proposed double AZ technique for digital correlated double sampling (CDS). A single-column digitizer consumes total power of 66.8Ī¼W and occupies an area of 5.4 Āµm x 610 Āµm. For mobile/wireless receiver applications, this dissertation presents a low-power wide-bandwidth multistage noise-shaping (MASH) continuous-time delta-sigma modulator (CT-Ī”Ī£M) employing finite impulse response (FIR) digital-to-analog converters (DACs) and encoder-embedded loop-unrolling (EELU) quantizers. The proposed MASH 1-1-1 topology is a cascade of three single-loop first-order CT-Ī”Ī£M stages, each of which consists of an active-RC integrator, a current-steering DAC, and an EELU quantizer. An FIR filter in the main 1.5-bit DAC improves the modulatorā€™s jitter sensitivity performance. FIRā€™s effect on the noise transfer function (NTF) of the modulator is compensated in the digital domain thanks to the MASH topology. Instead of employing a conventional analog direct feedback path, a 1.5-bit EELU quantizer based on multiplexing comparator outputs is proposed; this approach is suitable for highspeed operation together with power and area benefits. Fabricated in a 40-nm low-power CMOS technology, the modulatorā€™s prototype achieves a 67.3 dB of signal-to-noise and distortion ratio (SNDR), 68 dB of signal-to-noise ratio (SNR), and 68.2 dB of dynamic range (DR) within 50.5 MHz of bandwidth (BW), while consuming 19 mW of total power (P). The proposed modulator features 161.5 dB of figure-of-merit (FOM), defined as FOM = SNDR + 10 log10 (BW/P)
    corecore