90 research outputs found

    Advances in Radar Remote Sensing of Agricultural Crops: A Review

    Get PDF
    There are enormous advantages of a review article in the field of emerging technology like radar remote sensing applications in agriculture. This paper aims to report select recent advancements in the field of Synthetic Aperture Radar (SAR) remote sensing of crops. In order to make the paper comprehensive and more meaningful for the readers, an attempt has also been made to include discussion on various technologies of SAR sensors used for remote sensing of agricultural crops viz. basic SAR sensor, SAR interferometry (InSAR), SAR polarimetry (PolSAR) and polarimetric interferometry SAR (PolInSAR). The paper covers all the methodologies used for various agricultural applications like empirically based models, machine learning based models and radiative transfer theorem based models. A thorough literature review of more than 100 research papers indicates that SAR polarimetry can be used effectively for crop inventory and biophysical parameters estimation such are leaf area index, plant water content, and biomass but shown less sensitivity towards plant height as compared to SAR interferometry. Polarimetric SAR Interferometry is preferable for taking advantage of both SAR polarimetry and SAR interferometry. Numerous studies based upon multi-parametric SAR indicate that optimum selection of SAR sensor parameters enhances SAR sensitivity as a whole for various agricultural applications. It has been observed that researchers are widely using three models such are empirical, machine learning and radiative transfer theorem based models. Machine learning based models are identified as a better approach for crop monitoring using radar remote sensing data. It is expected that the review article will not only generate interest amongst the readers to explore and exploit radar remote sensing for various agricultural applications but also provide a ready reference to the researchers working in this field

    Novel clustering schemes for full and compact polarimetric SAR data: An application for rice phenology characterization

    Get PDF
    Information on rice phenological stages from Synthetic Aperture Radar (SAR) images is of prime interest for in-season monitoring. Often, prior in-situ measurements of phenology are not available. In such situations, unsupervised clustering of SAR images might help in discriminating phenological stages of a crop throughout its growing period. Among the existing unsupervised clustering techniques using full-polarimetric (FP) SAR images, the eigenvalue-eigenvector based roll-invariant scattering-type parameter, and the scattering entropy parameter are widely used in the literature. In this study, we utilize a unique target scattering-type parameter, which jointly uses the Barakat degree of polarization and the elements of the polarimetric coherency matrix. Likewise, we also utilize an equivalent parameter proposed for compact-polarimetric (CP) SAR data. These scattering-type parameters are analogous to the Cloude-Pottier’s parameter for FP SAR data and the ellipticity parameter for CP SAR data. Besides this, we also introduce new clustering schemes for both FP and CP SAR data for segmenting diverse scattering mechanisms across the phenological stages of rice. In this study, we use the RADARSAT-2 FP and simulated CP SAR data acquired over the Indian test site of Vijayawada under the Joint Experiment for Crop Assessment and Monitoring (JECAM) initiative. The temporal analysis of the scattering-type parameters and the new clustering schemes help us to investigate detailed scattering characteristics from rice across its phenological stages.This work was supported in part by the Spanish Ministry of Science, Innovation and Universities, the State Agency of Research (AEI), and the European Funds for Regional Development (EFRD) under Project TEC 2017-85244-C 2-1-P. The work of Dipankar Mandal was supported by the Ministry of Human Resource Development, Government of India (New Delhi, India) towards his Ph.D. assistantship through grant no. RSPHD0210

    Polarimetric Response of Rice Fields at C-Band: Analysis and Phenology Retrieval

    Get PDF
    A set of ten RADARSAT-2 images acquired in fully polarimetric mode over a test site with rice fields in Seville, Spain, has been analyzed to extract the main features of the C-band radar backscatter as a function of rice phenology. After observing the evolutions versus phenology of different polarimetric observables and explaining their behavior in terms of scattering mechanisms present in the scene, a simple retrieval approach has been proposed. This algorithm is based on three polarimetric observables and provides estimates from a set of four relevant intervals of phenological stages. The validation against ground data, carried out at parcel level for a set of six stands and up to nine dates per stand, provides a 96% rate of coincidence. Moreover, an equivalent compact-pol retrieval algorithm has been also proposed and validated, providing the same performance at parcel level. In all cases, the inversion is carried out by exploiting a single satellite acquisition, without any other auxiliary information.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and European Union FEDER under Project TEC2011-28201-C02-02

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    Monitoring Soil Moisture and Freeze/Thaw State Using C-band Imaging Radar

    Get PDF
    Soil moisture is an important state variable in many hydrological and meteorological applications. This thesis explores the use of the C-band synthetic aperture radar (SAR) parameters to monitor soil moisture and freeze/thaw state in a cold-season hydrologic environment. The circular-linear compact polarimetric (CP) configuration is considered as a possible alternative of the quad polarimetric (QP) system because it acquires images with wider swath and reduced complexity, cost and energy requirement of the radar system while maintaining the information content of the acquired imagery. In this study, 15 RADARSAT-2 QP images were acquired from October 2013 to June 2014 and CP images were simulated from each RADARSAT-2 QP imagery acquired. Field measurements of soil properties were collected along with the radar imagery acquisitions. The backscattering coefficients in all polarizations were able to discriminate frozen and unfrozen soils. But their correlations with soil moisture content were weak if examining frozen or unfrozen soils separately. The Oh et al. (1992) model was implemented in this study to compare with acquired RADARSAT-2 data. A good agreement was found between the linear polarimetric backscattering coefficients simulated by the Oh model and the RADARSAT-2 data, indicating that the study site even with 10 cm tall standing hay was consistent with a bare soil site at C-band and the Oh model can be applied to frozen soils. With respect to CP parameters, the first and fourth Stokes parameters and m-δ surface and volume scattering components can detect soil freeze/thaw state and have potential for frozen/unfrozen soils mapping. The influence of vegetation on selected CP parameters was also evident in this study. Results demonstrated the utility of C-band radar in detecting soil freeze/thaw state rather than monitoring the changes of soil moisture content. More image acquisitions during the freezing and thawing periods, continuous field measurements of soil moisture and state, and ground measurements collected over wider study area can help further develop understanding of the CP parameters and facilitate future use of the CP mode. The contribution of this thesis is to provide better understanding of the CP parameters at a specific site and to demonstrate that CP parameters can replicate QP SAR variables to detect surface soil conditions

    Wetland mapping and monitoring using polarimetric and interferometric synthetic aperture radar (SAR) data and tools

    Get PDF
    Wetlands are home to a great variety of flora and fauna species and provide several unique environmental functions, such as controlling floods, improving water-quality, supporting wildlife habitat, and shoreline stabilization. Detailed information on spatial distribution of wetland classes is crucial for sustainable management and resource assessment. Furthermore, hydrological monitoring of wetlands is also important for maintaining and preserving the habitat of various plant and animal species. This thesis investigates the existing knowledge and technological challenges associated with wetland mapping and monitoring and evaluates the limitations of the methodologies that have been developed to date. The study also proposes new methods to improve the characterization of these productive ecosystems using advanced remote sensing (RS) tools and data. Specifically, a comprehensive literature review on wetland monitoring using Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) techniques is provided. The application of the InSAR technique for wetland mapping provides the following advantages: (i) the high sensitivity of interferometric coherence to land cover changes is taken into account and (ii) the exploitation of interferometric coherence for wetland classification further enhances the discrimination between similar wetland classes. A statistical analysis of the interferometric coherence and SAR backscattering variation of Canadian wetlands, which are ignored in the literature, is carried out using multi-temporal, multi-frequency, and multi-polarization SAR data. The study also examines the capability of compact polarimetry (CP) SAR data, which will be collected by the upcoming RADARSAT Constellation Mission (RCM) and will constitute the main source of SAR observation in Canada, for wetland mapping. The research in this dissertation proposes a methodology for wetland classification using the synergistic use of intensity, polarimetry, and interferometry features using a novel classification framework. Finally, this work introduces a novel model based on the deep convolutional neural network (CNN) for wetland classification that can be trained in an end-to-end scheme and is specifically designed for the classification of wetland complexes using polarimetric SAR (PolSAR) imagery. The results of the proposed methods are promising and will significantly contribute to the ongoing efforts of conservation strategies for wetlands and monitoring changes. The approaches presented in this thesis serve as frameworks, progressing towards an operational methodology for mapping wetland complexes in Canada, as well as other wetlands worldwide with similar ecological characteristics

    Polarimetric Synthetic Aperture Radar, Principles and Application

    Get PDF
    Demonstrates the benefits of the usage of fully polarimetric synthetic aperture radar data in applications of Earth remote sensing, with educational and development purposes. Includes numerous up-to-date examples with real data from spaceborne platforms and possibility to use a software to support lecture practicals. Reviews theoretical principles in an intuitive way for each application topic. Covers in depth five application domains (forests, agriculture, cryosphere, urban, and oceans), with reference also to hazard monitorin

    Soil permittivity estimation over croplands using full and compact polarimetric SAR data

    Get PDF
    Soil permittivity estimation using Polarimetric Synthetic Aperture Radar (PolSAR) data has been an extensively researched area. Nonetheless, it provides ample scope for further improvements. The vegetation cover over the soil surface leads to a complex interaction of the incident polarized wave with the canopy and subsequently with the underlying soil surface. This paper introduces a novel methodology to estimate soil permittivity over croplands with vegetation cover using the full and compact polarimetric modes. The proposed method utilizes the full and compact polarimetric scattering-type parameters, θ FP and θ CP , respectively. These scattering type parameters are a function of the soil permittivity and the Barakat degree of polarization. The method considers the X-Bragg scattering model for the soil surface. In particular, these scattering-type parameters explicitly account for the depolarizing structure of the scattered wave while characterizing targets. Thus, the depolarization information in terms of surface roughness in the X-Bragg model gets inherent importance while using θ FP and θ CP , unlike existing scattering-type parameters. Therefore, the proposed technique enhances the expected value of the inversion accuracies. This study validated the major phenology stages of four crops using the UAVSAR full-pol and simulated compact pol SAR data and the ground truth data collected during the SMAPVEX12 campaign over Manitoba, Canada. The proposed method estimated permittivity with an RMSE of 2.2 to 4.69 for FP and 3.28 to 5.45 for CP SAR data along with a Pearson coefficient, r ≥ 0.62.Peer ReviewedPostprint (author's final draft

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version

    Discrimination of maize crop with hybrid polarimetric RISAT1 data

    Get PDF
    Microwave remote sensing provides an attractive approach to determine the spatial variability of crop characteristics. Synthetic aperture radar (SAR) image data provide unique possibility of acquiring data in all weather conditions. Several studies have used fully polarimetric data for extracting crop information, but it is limited by swath width. This study aimed to delineate maize crop using single date hybrid dual polarimetric Radar Imaging Satellite (RISAT)-1, Fine Resolution Stripmap mode (FRS)-1 data. Raney decomposition technique was used for explaining different scattering mechanisms of maize crop. Supervised classification on the decomposition image discriminated maize crop from other land-cover features. Results were compared with Resourcesat-2, Linear Imaging Self Scanner (LISS)-III optical sensor derived information. Spatial agreement of 91% was achieved between outputs generated from Resourcesat-2, LISS-III sensor and RISAT-1 data
    • …
    corecore