6 research outputs found

    Aeronautical Engineering. A continuing bibliography, supplement 112

    Get PDF
    This bibliography lists 424 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1979

    Energy: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 337 reports, articles, and other documents introduced into the NASA scientific and technical information system from January 1, 1975 through March 31, 1975

    Friction Force Microscopy of Deep Drawing Made Surfaces

    Get PDF
    Aim of this paper is to contribute to micro-tribology understanding and friction in micro-scale interpretation in case of metal beverage production, particularly the deep drawing process of cans. In order to bridging the gap between engineering and trial-and-error principles, an experimental AFM-based micro-tribological approach is adopted. For that purpose, the can’s surfaces are imaged with atomic force microscopy (AFM) and the frictional force signal is measured with frictional force microscopy (FFM). In both techniques, the sample surface is scanned with a stylus attached to a cantilever. Vertical motion of the cantilever is recorded in AFM and horizontal motion is recorded in FFM. The presented work evaluates friction over a micro-scale on various samples gathered from cylindrical, bottom and round parts of cans, made of same the material but with different deep drawing process parameters. The main idea is to link the experimental observation with the manufacturing process. Results presented here can advance the knowledge in order to comprehend the tribological phenomena at the contact scales, too small for conventional tribology

    Towards a Conceptual Design of an Intelligent Material Transport Based on Machine Learning and Axiomatic Design Theory

    Get PDF
    Reliable and efficient material transport is one of the basic requirements that affect productivity in sheet metal industry. This paper presents a methodology for conceptual design of intelligent material transport using mobile robot, based on axiomatic design theory, graph theory and artificial intelligence. Developed control algorithm was implemented and tested on the mobile robot system Khepera II within the laboratory model of manufacturing environment. Matlab© software package was used for manufacturing process simulation, implementation of search algorithms and neural network training. Experimental results clearly show that intelligent mobile robot can learn and predict optimal material transport flows thanks to the use of artificial neural networks. Achieved positioning error of mobile robot indicates that conceptual design approach can be used for material transport and handling tasks in intelligent manufacturing systems

    Towards a Conceptual Design of an Intelligent Material Transport Based on Machine Learning and Axiomatic Design Theory

    Get PDF
    Reliable and efficient material transport is one of the basic requirements that affect productivity in sheet metal industry. This paper presents a methodology for conceptual design of intelligent material transport using mobile robot, based on axiomatic design theory, graph theory and artificial intelligence. Developed control algorithm was implemented and tested on the mobile robot system Khepera II within the laboratory model of manufacturing environment. Matlab© software package was used for manufacturing process simulation, implementation of search algorithms and neural network training. Experimental results clearly show that intelligent mobile robot can learn and predict optimal material transport flows thanks to the use of artificial neural networks. Achieved positioning error of mobile robot indicates that conceptual design approach can be used for material transport and handling tasks in intelligent manufacturing systems

    Sensitivity analysis for reliable design verification of nuclear turbosets

    No full text
    In this paper we present an application of sensitivity analysis for design verification of nuclear turboset. Before the acquisition of a turbo generator, EDF performs independent design assessment in order to assure safe operating conditions of the new machine in its environment. Variables of interest are related to the vibration behaviour of the machine: its eigenfrequencies and dynamic sensitivity to unbalance. In the framework of design verification, epistemic uncertainties are preponderant. This lack of knowledge is due to inexistent or imprecise information about the design as well as to interaction of the rotating machinery with supporting and sub-structures. Sensitivity analysis allows to rank sources of uncertainty with respect to their importance and, possibly, to screen out insignificant sources of uncertainty. Further studies can then focus on predominant parameters. In particular, the constructor can be asked for detailed information only about the most significant parameters.JRC.DG.G.3-Econometrics and applied statistic
    corecore