53,445 research outputs found

    On-board Trajectory Computation for Mars Atmospheric Entry Based on Parametric Sensitivity Analysis of Optimal Control Problems

    Get PDF
    This thesis develops a precision guidance algorithm for the entry of a small capsule into the atmosphere of Mars. The entry problem is treated as nonlinear optimal control problem and the thesis focuses on developing a suboptimal feedback law. Therefore parametric sensitivity analysis of optimal control problems is combined with dynamic programming. This approach enables a real-time capable, locally suboptimal feedback scheme. The optimal control problem is initially considered in open loop fashion. To synthesize the feedback law, the optimal control problem is embedded into a family of neighboring problems, which are described by a parameter vector. The optimal solution for a nominal set of parameters is determined using direct optimization methods. In addition the directional derivatives (sensitivities) of the optimal solution with respect to the parameters are computed. Knowledge of the nominal solution and the sensitivities allows, under certain conditions, to apply Taylor series expansion to approximate the optimal solution for disturbed parameters almost instantly. Additional correction steps can be applied to improve the optimality of the solution and to eliminate errors in the constraints. To transfer this strategy to the closed loop system, the computation of the sensitivities is performed with respect to different initial conditions. Determining the perturbation direction and interpolating between sensitivities of neighboring initial conditions allows the approximation of the extremal field in a neighborhood of the nominal trajectory. This constitutes a locally suboptimal feedback law. The proposed strategy is applied to the atmospheric entry problem. The developed algorithm is part of the main control loop, i.e. optimal controls and trajectories are computed at a fixed rate, taking into account the current state and parameters. This approach is combined with a trajectory tracking controller based on the aerodynamic drag. The performance and the strengthsa and weaknesses of this two degree of freedom guidance system are analyzed using Monte Carlo simulation. Finally the real-time capability of the proposed algorithm is demonstrated in a flight representative processor-in-the-loop environment

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Fast Non-Parametric Learning to Accelerate Mixed-Integer Programming for Online Hybrid Model Predictive Control

    Full text link
    Today's fast linear algebra and numerical optimization tools have pushed the frontier of model predictive control (MPC) forward, to the efficient control of highly nonlinear and hybrid systems. The field of hybrid MPC has demonstrated that exact optimal control law can be computed, e.g., by mixed-integer programming (MIP) under piecewise-affine (PWA) system models. Despite the elegant theory, online solving hybrid MPC is still out of reach for many applications. We aim to speed up MIP by combining geometric insights from hybrid MPC, a simple-yet-effective learning algorithm, and MIP warm start techniques. Following a line of work in approximate explicit MPC, the proposed learning-control algorithm, LNMS, gains computational advantage over MIP at little cost and is straightforward for practitioners to implement

    Robust control of systems with real parameter uncertainty and unmodelled dynamics

    Get PDF
    During this research period we have made significant progress in the four proposed areas: (1) design of robust controllers via H infinity optimization; (2) design of robust controllers via mixed H2/H infinity optimization; (3) M-delta structure and robust stability analysis for structured uncertainties; and (4) a study on controllability and observability of perturbed plant. It is well known now that the two-Riccati-equation solution to the H infinity control problem can be used to characterize all possible stabilizing optimal or suboptimal H infinity controllers if the optimal H infinity norm or gamma, an upper bound of a suboptimal H infinity norm, is given. In this research, we discovered some useful properties of these H infinity Riccati solutions. Among them, the most prominent one is that the spectral radius of the product of these two Riccati solutions is a continuous, nonincreasing, convex function of gamma in the domain of interest. Based on these properties, quadratically convergent algorithms are developed to compute the optimal H infinity norm. We also set up a detailed procedure for applying the H infinity theory to robust control systems design. The desire to design controllers with H infinity robustness but H(exp 2) performance has recently resulted in mixed H(exp 2) and H infinity control problem formulation. The mixed H(exp 2)/H infinity problem have drawn the attention of many investigators. However, solution is only available for special cases of this problem. We formulated a relatively realistic control problem with H(exp 2) performance index and H infinity robustness constraint into a more general mixed H(exp 2)/H infinity problem. No optimal solution yet is available for this more general mixed H(exp 2)/H infinity problem. Although the optimal solution for this mixed H(exp 2)/H infinity control has not yet been found, we proposed a design approach which can be used through proper choice of the available design parameters to influence both robustness and performance. For a large class of linear time-invariant systems with real parametric perturbations, the coefficient vector of the characteristic polynomial is a multilinear function of the real parameter vector. Based on this multilinear mapping relationship together with the recent developments for polytopic polynomials and parameter domain partition technique, we proposed an iterative algorithm for coupling the real structured singular value
    • …
    corecore