1,025 research outputs found

    Relating phase field and sharp interface approaches to structural topology optimization

    Get PDF
    A phase field approach for structural topology optimization which allows for topology changes and multiple materials is analyzed. First order optimality conditions are rigorously derived and it is shown via formally matched asymptotic expansions that these conditions converge to classical first order conditions obtained in the context of shape calculus. We also discuss how to deal with triple junctions where e.g. two materials and the void meet. Finally, we present several numerical results for mean compliance problems and a cost involving the least square error to a target displacement

    Behavior of a net of fibers linked by viscous interactions: theory and mechanical properties

    Get PDF
    International audienceThis paper presents an investigation of the macroscopic mechanical behavior of highly concentrated fiber suspensions for which the mechanical behavior is governed by local fiber-fiber interactions. The problem is approached by considering the case of a net of rigid fibers of uniform length, linked by viscous point interactions of power-law type. Those interactions may result in local forces and moments located at the contacting point between two fibers, and respectively power-law functions of the local linear and angular velocity at this point. Assuming the existence of an elementary representative volume which size is small compared to the size of the whole structure, the fiber net is regarded as a periodic assembly of identical cells. Macroscopic equilibrium and constitutive equations of the equivalent continuum are then obtained by the discrete and periodic media homogenization method, based on the use of asymptotic expansions. Depending on the order of magnitude of local translational viscosities and rotational viscosities, three types of the equivalent continua are proved to be possible. One of them leads to an effective Cosserat medium, the other ones being usual Cauchy media. Lastly, formulations that enable an effective computation of constitutive equations are detailed. They show that the equivalent continuum behaves like an anisotropic power-law fluid

    Data-driven modelling of biological multi-scale processes

    Full text link
    Biological processes involve a variety of spatial and temporal scales. A holistic understanding of many biological processes therefore requires multi-scale models which capture the relevant properties on all these scales. In this manuscript we review mathematical modelling approaches used to describe the individual spatial scales and how they are integrated into holistic models. We discuss the relation between spatial and temporal scales and the implication of that on multi-scale modelling. Based upon this overview over state-of-the-art modelling approaches, we formulate key challenges in mathematical and computational modelling of biological multi-scale and multi-physics processes. In particular, we considered the availability of analysis tools for multi-scale models and model-based multi-scale data integration. We provide a compact review of methods for model-based data integration and model-based hypothesis testing. Furthermore, novel approaches and recent trends are discussed, including computation time reduction using reduced order and surrogate models, which contribute to the solution of inference problems. We conclude the manuscript by providing a few ideas for the development of tailored multi-scale inference methods.Comment: This manuscript will appear in the Journal of Coupled Systems and Multiscale Dynamics (American Scientific Publishers

    A pore-scale model for permeable biofilm: numerical simulations and laboratory experiments

    Get PDF
    In this paper we derive a pore-scale model for permeable biofilm formation in a two-dimensional pore. The pore is divided in two phases: water and biofilm. The biofilm is assumed to consist of four components: water, extracellular polymeric substances (EPS), active bacteria, and dead bacteria. The flow of water is modeled by the Stokes equation whereas a diffusion-convection equation is involved for the transport of nutrients. At the water/biofilm interface, nutrient transport and shear forces due to the water flux are considered. In the biofilm, the Brinkman equation for the water flow, transport of nutrients due to diffusion and convection, displacement of the biofilm components due to reproduction/dead of bacteria, and production of EPS are considered. A segregated finite element algorithm is used to solve the mathematical equations. Numerical simulations are performed based on experimentally determined parameters. The stress coefficient is fitted to the experimental data. To identify the critical model parameters, a sensitivity analysis is performed. The Sobol sensitivity indices of the input parameters are computed based on uniform perturbation by ±10%\pm 10 \% of the nominal parameter values. The sensitivity analysis confirms that the variability or uncertainty in none of the parameters should be neglected

    On the detection of several obstacles in 2D Stokes flow: topological sensitivity and combination with shape derivatives

    Get PDF
    International audienceWe consider the inverse problem of detecting the location and the shape of several obstacles immersed in a fluid flowing in a larger bounded domain Ω from partial boundary measurements in the two dimensional case. The fluid flow is governed by the steady-state Stokes equations. We use a topological sensitivity analysis for the Kohn-Vogelius functional in order to find the number and the qualitative location of the objects. Then we explore the numerical possibilities of this approach and also present a numerical method which combines the topological gradient algorithm with the classical geometric shape gradient algorithm; this blending method allows to find the number of objects, their relative location and their approximate shape
    • …
    corecore