9,667 research outputs found

    Towards Picogram Detection of Superparamagnetic Iron-Oxide Particles Using a Gradiometric Receive Coil

    Full text link
    Superparamagnetic iron-oxide nanoparticles can be used in a variety of medical applications like vascular or targeted imaging. Magnetic particle imaging (MPI) is a promising tomographic imaging technique that allows visualizing the 3D nanoparticle distribution concentration in a non-invasive manner. The two main strengths of MPI are high temporal resolution and high sensitivity. While the first has been proven in the assessment of dynamic processes like cardiac imaging, it is unknown how far the detection limit of MPI can be lowered. Within this work, we will present a highly sensitive gradiometric receive-coil unit combined with a noise-matching network tailored for the measurement of mice. The setup is capable of detecting 5 ng of iron in vitro at 2.14 sec acquisition time. In terms of iron concentration we are able to detect 156 {\mu}g/L marking the lowest value that has been reported for an MPI scanner so far. In vivo MPI mouse images of a 512 ng bolus at 21.5 ms acquisition time allow for capturing the flow of an intravenously injected tracer through the heart of a mouse. Since it has been rather difficult to compare detection limits across MPI publications we propose guidelines improving the comparability of future MPI studies.Comment: 15 Pages, 7 Figures, V2: Changed the initials of Author Kannan M Krishnan, added two citations, corrected typo

    Thermal to Nonthermal Energy Partition at the Early Rise Phase of Solar Flares

    Full text link
    In some flares the thermal component appears much earlier than the nonthermal component in X-ray range. Using sensitive microwave observations we revisit this finding made by Battaglia et al. (2009) based on RHESSI data analysis. We have found that nonthermal microwave emission produced by accelerated electrons with energy of at least several hundred keV, appears as early as the thermal soft X-ray emission indicative that the electron acceleration takes place at the very early flare phase. The non-detection of the hard X-rays at that early stage of the flares is, thus, an artifact of a limited RHESSI sensitivity. In all considered events, the microwave emission intensity increases at the early flare phase. We found that either thermal or nonthermal gyrosynchrotron emission can dominate the low-frequency part of the microwave spectrum below the spectral peak occurring at 3-10 GHz. In contrast, the high-frequency optically thin part of the spectrum is always formed by the nonthermal, accelerated electron component, whose power-law energy spectrum can extend up to a few MeV at this early flare stage. This means that even though the total number of accelerated electrons is small at this stage, their nonthermal spectrum is fully developed. This implies that an acceleration process of available seed particles is fully operational. While, creation of this seed population (the process commonly called `injection' of the particles from the thermal pool into acceleration) has a rather low efficiency at this stage, although, the plasma heating efficiency is high. This imbalance between the heating and acceleration (in favor of the heating) is difficult to reconcile within most of available flare energization models. Being reminiscent of the tradeoff between the Joule heating and runaway electron acceleration, it puts additional constraints on the electron injection into the acceleration process.Comment: 11 pages, 12 figures, accepted for Ap

    Gamma-rays from dark matter annihilations strongly constrain the substructure in halos

    Full text link
    Recently, it has been shown that electrons and positrons from dark matter (DM) annihilations provide an excellent fit to the Fermi, PAMELA, and HESS data. Using this DM model, which requires an enhancement of the annihilation cross section over its standard value to match the observations, we show that it immediately implies an observable level of gamma-ray emission for the Fermi telescope from nearby galaxy clusters such as Virgo and Fornax. We show that this DM model implies a peculiar feature from final state radiation that is a distinctive signature of DM. Using the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures within DM halos to be > 5x10^-3 M_sun -- about four orders of magnitudes larger than the expectation for cold dark matter. This limits the cutoff scale in the linear matter power spectrum to k < 35/kpc which can be explained by e.g., warm dark matter. Very near future Fermi observations will strongly constrain the minimum mass to be > 10^3 M_sun: if the true substructure cutoff is much smaller than this, the DM interpretation of the Fermi/PAMELA/HESS data must be wrong. To address the problem of astrophysical foregrounds, we performed high-resolution, cosmological simulations of galaxy clusters that include realistic cosmic ray (CR) physics. We compute the dominating gamma-ray emission signal resulting from hadronic CR interactions and find that it follows a universal spectrum and spatial distribution. If we neglect the anomalous enhancement factor and assume standard values for the cross section and minimum subhalo mass, the same model of DM predicts comparable levels of the gamma-ray emission from DM annihilations and CR interactions. This suggests that spectral subtraction techniques could be applied to detect the annihilation signal.Comment: 5 pages, 2 figures (published version; minor corrections to figures and result, equation added
    • …
    corecore