7,418 research outputs found

    Multiple-Edge-Fault-Tolerant Approximate Shortest-Path Trees

    Full text link
    Let GG be an nn-node and mm-edge positively real-weighted undirected graph. For any given integer f1f \ge 1, we study the problem of designing a sparse \emph{f-edge-fault-tolerant} (ff-EFT) σ\sigma{\em -approximate single-source shortest-path tree} (σ\sigma-ASPT), namely a subgraph of GG having as few edges as possible and which, following the failure of a set FF of at most ff edges in GG, contains paths from a fixed source that are stretched at most by a factor of σ\sigma. To this respect, we provide an algorithm that efficiently computes an ff-EFT (2F+1)(2|F|+1)-ASPT of size O(fn)O(f n). Our structure improves on a previous related construction designed for \emph{unweighted} graphs, having the same size but guaranteeing a larger stretch factor of 3(f+1)3(f+1), plus an additive term of (f+1)logn(f+1) \log n. Then, we show how to convert our structure into an efficient ff-EFT \emph{single-source distance oracle} (SSDO), that can be built in O~(fm)\widetilde{O}(f m) time, has size O(fnlog2n)O(fn \log^2 n), and is able to report, after the failure of the edge set FF, in O(F2log2n)O(|F|^2 \log^2 n) time a (2F+1)(2|F|+1)-approximate distance from the source to any node, and a corresponding approximate path in the same amount of time plus the path's size. Such an oracle is obtained by handling another fundamental problem, namely that of updating a \emph{minimum spanning forest} (MSF) of GG after that a \emph{batch} of kk simultaneous edge modifications (i.e., edge insertions, deletions and weight changes) is performed. For this problem, we build in O(mlog3n)O(m \log^3 n) time a \emph{sensitivity} oracle of size O(mlog2n)O(m \log^2 n), that reports in O(k2log2n)O(k^2 \log^2 n) time the (at most 2k2k) edges either exiting from or entering into the MSF. [...]Comment: 16 pages, 4 figure

    Sparse Fault-Tolerant BFS Trees

    Full text link
    This paper addresses the problem of designing a sparse {\em fault-tolerant} BFS tree, or {\em FT-BFS tree} for short, namely, a sparse subgraph TT of the given network GG such that subsequent to the failure of a single edge or vertex, the surviving part TT' of TT still contains a BFS spanning tree for (the surviving part of) GG. Our main results are as follows. We present an algorithm that for every nn-vertex graph GG and source node ss constructs a (single edge failure) FT-BFS tree rooted at ss with O(n \cdot \min\{\Depth(s), \sqrt{n}\}) edges, where \Depth(s) is the depth of the BFS tree rooted at ss. This result is complemented by a matching lower bound, showing that there exist nn-vertex graphs with a source node ss for which any edge (or vertex) FT-BFS tree rooted at ss has Ω(n3/2)\Omega(n^{3/2}) edges. We then consider {\em fault-tolerant multi-source BFS trees}, or {\em FT-MBFS trees} for short, aiming to provide (following a failure) a BFS tree rooted at each source sSs\in S for some subset of sources SVS\subseteq V. Again, tight bounds are provided, showing that there exists a poly-time algorithm that for every nn-vertex graph and source set SVS \subseteq V of size σ\sigma constructs a (single failure) FT-MBFS tree T(S)T^*(S) from each source siSs_i \in S, with O(σn3/2)O(\sqrt{\sigma} \cdot n^{3/2}) edges, and on the other hand there exist nn-vertex graphs with source sets SVS \subseteq V of cardinality σ\sigma, on which any FT-MBFS tree from SS has Ω(σn3/2)\Omega(\sqrt{\sigma}\cdot n^{3/2}) edges. Finally, we propose an O(logn)O(\log n) approximation algorithm for constructing FT-BFS and FT-MBFS structures. The latter is complemented by a hardness result stating that there exists no Ω(logn)\Omega(\log n) approximation algorithm for these problems under standard complexity assumptions

    Effective Edge-Fault-Tolerant Single-Source Spanners via Best (or Good) Swap Edges

    Full text link
    Computing \emph{all best swap edges} (ABSE) of a spanning tree TT of a given nn-vertex and mm-edge undirected and weighted graph GG means to select, for each edge ee of TT, a corresponding non-tree edge ff, in such a way that the tree obtained by replacing ee with ff enjoys some optimality criterion (which is naturally defined according to some objective function originally addressed by TT). Solving efficiently an ABSE problem is by now a classic algorithmic issue, since it conveys a very successful way of coping with a (transient) \emph{edge failure} in tree-based communication networks: just replace the failing edge with its respective swap edge, so as that the connectivity is promptly reestablished by minimizing the rerouting and set-up costs. In this paper, we solve the ABSE problem for the case in which TT is a \emph{single-source shortest-path tree} of GG, and our two selected swap criteria aim to minimize either the \emph{maximum} or the \emph{average stretch} in the swap tree of all the paths emanating from the source. Having these criteria in mind, the obtained structures can then be reviewed as \emph{edge-fault-tolerant single-source spanners}. For them, we propose two efficient algorithms running in O(mn+n2logn)O(m n +n^2 \log n) and O(mnlogα(m,n))O(m n \log \alpha(m,n)) time, respectively, and we show that the guaranteed (either maximum or average, respectively) stretch factor is equal to 3, and this is tight. Moreover, for the maximum stretch, we also propose an almost linear O(mlogα(m,n))O(m \log \alpha(m,n)) time algorithm computing a set of \emph{good} swap edges, each of which will guarantee a relative approximation factor on the maximum stretch of 3/23/2 (tight) as opposed to that provided by the corresponding BSE. Surprisingly, no previous results were known for these two very natural swap problems.Comment: 15 pages, 4 figures, SIROCCO 201

    Setting Parameters by Example

    Full text link
    We introduce a class of "inverse parametric optimization" problems, in which one is given both a parametric optimization problem and a desired optimal solution; the task is to determine parameter values that lead to the given solution. We describe algorithms for solving such problems for minimum spanning trees, shortest paths, and other "optimal subgraph" problems, and discuss applications in multicast routing, vehicle path planning, resource allocation, and board game programming.Comment: 13 pages, 3 figures. To be presented at 40th IEEE Symp. Foundations of Computer Science (FOCS '99

    An O(1)-Approximation for Minimum Spanning Tree Interdiction

    Full text link
    Network interdiction problems are a natural way to study the sensitivity of a network optimization problem with respect to the removal of a limited set of edges or vertices. One of the oldest and best-studied interdiction problems is minimum spanning tree (MST) interdiction. Here, an undirected multigraph with nonnegative edge weights and positive interdiction costs on its edges is given, together with a positive budget B. The goal is to find a subset of edges R, whose total interdiction cost does not exceed B, such that removing R leads to a graph where the weight of an MST is as large as possible. Frederickson and Solis-Oba (SODA 1996) presented an O(log m)-approximation for MST interdiction, where m is the number of edges. Since then, no further progress has been made regarding approximations, and the question whether MST interdiction admits an O(1)-approximation remained open. We answer this question in the affirmative, by presenting a 14-approximation that overcomes two main hurdles that hindered further progress so far. Moreover, based on a well-known 2-approximation for the metric traveling salesman problem (TSP), we show that our O(1)-approximation for MST interdiction implies an O(1)-approximation for a natural interdiction version of metric TSP
    corecore