235 research outputs found

    Numerical simulation of bus aerodynamics on several classes of bridge decks

    Get PDF
    This paper is focused on improving traffic safety on bridges under crosswind conditions, as adverse wind conditions can increase the risk of traffic accidents. Two ways to improve traffic safety are investigated: improving vehicle stability by means of wind fences installed on the bridge deck and by modifying the design parameters of the infrastructure. Specifically, this study examines the influence of different parameters related to the bridge deck configuration on the aerodynamic coefficients acting on a bus model under crosswind conditions. The aerodynamic coefficients related to side force, lift force and rollover moment are obtained for three classes of bridge deck (box, girder and board) by numerical simulation. FLUENT was used to solve the Reynolds-averaged Navier?Stokes (RANS) equations along with the shear stress transport (SST) k?? turbulence model. Two crash barriers located on the box bridge deck were replaced with an articulating wind fence model and the effect of the angle between the wind fence and the horizontal plane on the bus aerodynamic was investigated. The risk of rollover accidents was found to be slightly influenced by the bridge deck type for a yaw angle range between 75° and 120°. In order to study the effect of the yaw angle on the aerodynamic coefficients acting on bus, both the bus model and the bridge model were simultaneously rotated. The minimum value of the rollover coefficient was obtained for an angle of 60° between the wind fence slope and the horizontal plane. The only geometry parameter of the box bridge deck which significantly affects bus aerodynamics is the box height. The present research highlights the usefulness of computational fluid dynamics (CFD) for improving traffic safety, studying the performance of the articulating wind fence, and determining which geometry parameters of the box deck have a significant influence on the bus stability.This work was supported by the OASIS Research Project that was co financed by CDTI (Spanish Science and Innovation Ministry) and developed with the Spanish companies: Iridium, OHL Concesiones, Abertis, Sice, Indra, Dragados, OHL, Geocisa, GMV, Asfaltos Augusta, Hidrofersa, Eipsa, PyG, CPS, AEC and Torre de Comares Arquitectos S.L and 16 research centres. The authors also acknowledge the partial funding with FEDER funds under the Research Project FC-15-GRUPIN14-004. Finally, we also thanks to Swanson Analysis Inc. for the use of ANSYS University Research programs as well as the Workbench simulation environment

    Aeroelastic Phenomena and Pedestrian-Structure Dynamic Interaction on Non-Conventional Bridges and Footbridges

    Get PDF
    Fluid-structure and pedestrian-structure interaction phenomena are extremely important for non-conventional bridges. The results presented in this volume concern: simplified formulas for flutter assessment; innovative structural solutions to increase the aeroelastic stability of long-span bridges; numerical simulations of the flow around a benchmark rectangular cylinder; examples of designs of large structures assisted by wind-tunnel tests; analytical, computational and experimental investigation of the synchronisation mechanisms between pedestrians and footbridge structures. The present book is addressed to a wide audience including professionals, doctoral students and researchers, aiming to increase their know-how in the field of wind engineering, bluff-body aerodynamics and bridge dynamics

    New Advances in Fluid Structure Interaction

    Get PDF
    Fluid–structure interactions (FSIs) play a crucial role in the design, construction, service and maintenance of many engineering applications, e.g., aircraft, towers, pipes, offshore platforms and long-span bridges. The old Tacoma Narrows Bridge (1940) is probably one of the most infamous examples of serious accidents due to the action of FSIs. Aircraft wings and wind-turbine blades can be broken because of FSI-induced oscillations. To alleviate or eliminate these unfavorable effects, FSIs must be dealt with in ocean, coastal, offshore and marine engineering to design safe and sustainable engineering structures. In addition, the wind effects on plants and the resultant wind-induced motions are examples of FSIs in nature. To meet the objectives of progress and innovation in FSIs in various scenarios of engineering applications and control schemes, this book includes 15 research studies and collects the most recent and cutting-edge developments on these relevant issues. The topics cover different areas associated with FSIs, including wind loads, flow control, energy harvesting, buffeting and flutter, complex flow characteristics, train–bridge interactions and the application of neural networks in related fields. In summary, these complementary contributions in this publication provide a volume of recent knowledge in the growing field of FSIs

    A Review of the Susceptibility of the Scalpay Bridge to Aerodynamic Effects. G.U. Aero Report 9512.

    Get PDF
    An independent review is presented of the procedures employed by Crouch, Hogg & Waterman (CHW) in their assessment of the likely aerodynamic effects on the proposed Scalpay Bridge. The review identifies the principal design criteria relevant to the aerodynamic and structural dynamic performance of the Scalpay Bridge as prescribed in BD 49/93. On the basis of data and information supplied by CHW, an assessment is made of the degree to which these criteria are satisfied. It is concluded that there are several sensitive areas in the design analyses undertaken by CHW that should be reconsidered in view of the apparent susceptibility of the bridge to aerodynamic effects. In particular, it is recommended that the response of the bridge to vortex excitation and turbulence, and the narrow stability margin against galloping, be investigated furthe

    Experimental Study on the Effect of Attachments on the Vortex-Induced Vibration of a Centrally Slotted Box Deck

    Get PDF
    Centrally slotted box decks have been commonly used as components of bridges, especially for long-span bridges. A wind tunnel experiment was conducted to investigate the effect of attachments on the vortex-induced vibration (VIV) of the deck. In this research, the characteristics of VIV responses at different attack wind angles of 5 models considering naked bridge decks, crash barriers, wind barriers, and vehicles on bridges were studied and discussed. The effects of crash barriers, wind barriers and vehicles on the VIV behaviors of the bridge deck were also investigated experimentally. Multiple lock-in wind speed intervals were found to occur for all the models considered, and the vibrating amplitude and frequency show differences in different models. The results of the study showed that, owing to the installation of crash barriers or wind barriers, the vibrating frequency at the second lock-in interval indicated a double natural frequency. However, for the naked bridge deck model, the vibrating frequencies were close to the vertical natural frequency at all lock-in regions. Additionally, the frequency showed an evolutionary characteristic from the first lock-in interval to the second lock-in interval. Generally, the installation of crash barriers and wind barriers caused an increase of 89.8% and 123.7% on maximum vibrating amplitudes respectively. The vehicles had amplification effects on the amplitudes in both lock-in regions, with an increase of 41.5% at the maximum amplitudes. This study provides a guideline for designing bridges consisting of centrally slotted box-type decks

    Three-dimensional FSI Simulation by Using a Novel Hybrid Scaling – Application to the Tacoma Narrows Bridge

    Get PDF
    In this paper a novel fluid-structure interaction approach for simulating flutter phenomenon is presented. The method is capable of modelling the structural motion and the fluid flow coupling in a fully three-dimensional manner. The key step of the proposed FSI procedure is a hybrid scaling of the physical fields; certain properties of the CFD simulation are scaled, while those of the mechanical system are kept original. This kind of scaling provides a significant speedup, since the number of the costly CFD time steps can be remarkably reduced. The acceptable computational time makes it possible to consider complex engineering problems such as buffeting, vortex shedding or flutter of a bridge deck or a wing of an airplane

    Performance of Wind Exposed Structures

    Get PDF
    PERBACCO (a free Italian acronym for Life-cycle Performance, Innovation and Design Criteria for Structures and Infrastructures Facing Æolian and Other Natural Hazards) is a research project partly funded by the Italian Ministry for University (MIUR) in the PRIN (Progetti di Ricerca di Interesse Nazionale) framework, for the years 2004-05.Within the project, a first attempt has been made to integrate different disciplines aiming at an overall optimization of the performance of a wide range of wind exposed structures and infrastructures, with consequent benefi cial impact on the society.The overall objectives were (a) to provide unifi ed concepts for "expected performance" and "risks induced by æolian and other natural hazards", to be applied to structures and infrastructures over their whole life-cycle, such to be acceptable to stakeholders in the construction process (i.e. from the owner to the end-user), (b) to provide models and methodologies for dynamic monitoring of the performance of structures and infrastructures, to be integrated in appropriately designed procedures, and (c) to collect, refi ne, fi le and disseminate the knowledge available on a European basis, concerning the performance of wind-exposed structures and facilities, in a way such to be of use to Construction Industry. This volume summarises the main results obtained during the Project, with each Section addressing a different class of problems, to which many research Units have contributed. A list of papers containing the main results of the research activities carried out within the Project is also provided in each Section

    Ultimate strength

    Get PDF
    Concern for the ductile behaviour of ships and offshore structures and their structural components under ultimate conditions. Attention shall be given to the influence of fabrication imperfections and in-service damage and degradation on reserve strength
    • …
    corecore