108,074 research outputs found

    A dynamic approach to vehicle scheduling

    Get PDF
    This paper presents a dynamic approach to the vehicle scheduling problem. We discuss the potential benefit of our approach compared to the traditional one, where the vehicle scheduling problem is solved only once for a whole period and the travel times are assumed to be fixed. In our dynamic approach, we solve a sequence of optimization problems, where we take into account different scenarios for future travel times. Because in the multiple-depot case we cannot solve the problem exactly within reasonable computation time, we use a "cluster-reschedule" heuristic where we first assign trips to depots by solving the static problem and then solve dynamic single-depot problems. We use new mathematical formulations of these problems that allow a fast solution by standard optimization software. We report on the results of a computational study with real life data, in which we compare different variants of our approach and perform a sensitivity analysis with respect to deviations of the actual travel times from the estimated ones.vehicle scheduling;dynamic scheduling;public transport;stochastic programming;stochastic traveltimes

    Dynamic scheduling: integrating schedule risk analysis with earned value management

    Get PDF
    The topic of this paper is dynamic project scheduling to illustrate that project scheduling is a dynamic process that involves a continuous stream of changes and is a never ending process to support decisions that need to be made along the life of the project. The focus of this paper lies on three crucial dimensions of dynamic scheduling which can be briefly outlined along the following lines: (i) Baseline scheduling to construct a timetable that provides a start and end date for each project activity, taking activity relations, resource constraints and other project characteristics into account, and aiming to reach a certain scheduling objective, (ii) risk analysis to analyze the strengths and weaknesses of your project schedule in order to obtain information about the schedule sensitivity and the possible changes that undoubtedly occur during project progress and (iii) project control to measure the (time and cost) performance of a project during its progress and use the information obtained during the scheduling and risk analysis steps to monitor and update the project and to take corrective actions in case of problems. The focus of the current paper is on the importance and crucial role of the baseline scheduling component for the two other components, and the integration of the schedule risk and project control component in order to support a better corrective action decision making when the project is in trouble

    Sensitivity analysis and efficient algorithms for some economic lot-sizing and scheduling problems

    Get PDF
    Many of optimization problems can be decomposed into a number of easier subproblems of the same type. Then dynamic programming (DP) seems to be a natural way to obtain an optimal solution. A straightforward application of DP usually leads to algorithms whose running time heavily depends on the magnitude of the input data. It has been shown in the thesis that it is possible to improve the complexity status of straightforward DP algorithms for different optimization problems, arising in production planning and scheduling, by means of a sensitivity analysis that allows to shrink the state space and to reduce thereby the amount of unnecessary computations. Using the suggested approach, we transform DP algorithms into polynomial ones and into so-called fully polynomial time approximation schemes.Viele Optimierungsprobleme können als Menge einfacherer Subprobleme dargestellt werden. Dynamische Programmierung (DP) ist dann ein offensichtliches Verfahren eine optimale Lösung zu finden. Eine direkte Anwendung der DP fĂŒhrt aber in den meisten FĂ€llen zu Algorithmen, deren Laufzeiten sehr von der GrĂ¶ĂŸe des Inputs abhĂ€ngen. In der vorliegenden Dissertation wirt an bestimmten Produktionsplanungs- und Schedulingproblemen gezeigt, dass man die Laufzeit der auf DP basierenden Algorithmen verbessern kann, falls eine Art von SensitivitĂ€tsanalyse nachtrĂ€glich verwendet wird. Mit den vorgestellten Methoden werden solche Algorithmen in polynomiale Algorithmen und in so genannten vollpolynomiale Approximationsschematas transformiert

    A dynamic approach to vehicle scheduling

    Get PDF
    This paper presents a dynamic approach to the vehicle scheduling problem. We discuss the potential benefit of our approach compared to the traditional one, where the vehicle scheduling problem is solved only once for a whole period and the travel times are assumed to be fixed. In our dynamic approach, we solve a sequence of optimization problems, where we take into account different scenarios for future travel times. Because in the multiple-depot case we cannot solve the problem exactly within reasonable computation time, we use a "cluster-reschedule" heuristic where we first assign trips to depots by solving the static problem and then solve dynamic single-depot problems. We use new mathematical formulations of these problems that allow a fast solution by standard optimization software. We report on the results of a computational study with real life data, in which we compare different variants of our approach and perform a sensitivity analysis with respect to deviations of the actual travel times from the estimated ones

    Partial flexible job shop scheduling considering preventive maintenance and priorities

    Full text link
    [EN] In this paper, a new mathematical programming model is proposed for a partial flexible job shop scheduling problem with an integrated solution approach. The purpose of this model is the assignment of production operations to machines with the goal of simultaneously minimizing operating costs and penalties. These penalties include delayed delivery, deviation from a fixed time point for preventive maintenance, and deviation from the priorities of each machine. Considering the priorities for machines in partial flexible job shop scheduling problems can be a contribution in closer to the reality of production systems. For validation and evaluation of the effectiveness of the model, several numerical examples are solved by using the Baron solver in GAMS. Sensitivity analysis is performed for the model parameters. The results further indicate the relationship between scheduling according to priorities of each machine and production scheduling.Farahani, A.; Tohidi, H.; Khalaj, M.; Shoja, A. (2020). Partial flexible job shop scheduling considering preventive maintenance and priorities. WPOM-Working Papers on Operations Management. 11(2):27-48. https://doi.org/10.4995/wpom.v11i2.14187OJS274811

    An overview of recent research results and future research avenues using simulation studies in project management

    Get PDF
    This paper gives an overview of three simulation studies in dynamic project scheduling integrating baseline scheduling with risk analysis and project control. This integration is known in the literature as dynamic scheduling. An integrated project control method is presented using a project control simulation approach that combines the three topics into a single decision support system. The method makes use of Monte Carlo simulations and connects schedule risk analysis (SRA) with earned value management (EVM). A corrective action mechanism is added to the simulation model to measure the efficiency of two alternative project control methods. At the end of the paper, a summary of recent and state-of-the-art results is given, and directions for future research based on a new research study are presented

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    Evolutionary design of a full–envelope flight control system for an unstable fighter aircraft

    Get PDF
    The use of an evolutionary algorithm in the framework of H∞ control theory is being considered as a means for synthesizing controller gains that minimize a weighted combination of the infinite-norm of the sensitivity function (for disturbance attenuation requirements) and complementary sensitivity function (for robust stability requirements) at the same time. The case study deals with the stability and control augmentation of an unstable high-performance jet aircraft. Constraints on closed-loop response are also enforced, that represent typical requirements on airplane handling qualities, that makes the control law synthesis process more demanding. Gain scheduling is required, in order to obtain satisfactory performance over the whole flight envelope, so that the synthesis is performed at different reference trim conditions, for several values of the dynamic pressure, Q, used as the scheduling parameter. Nonetheless, the dynamic behaviour of the aircraft may exhibit significant variations when flying at different altitudes h, even for the same value of the dynamic pressure, so that a trade-off is required between different feasible controllers synthesized for a given value of Q, but different h. A multi-objective search is thus considered for the determination of the best suited solution to be introduced in the scheduling of the control law. The obtained results are then tested on a longitudinal nonlinear model of the aircraft

    COLAB:A Collaborative Multi-factor Scheduler for Asymmetric Multicore Processors

    Get PDF
    Funding: Partially funded by the UK EPSRC grants Discovery: Pattern Discovery and Program Shaping for Many-core Systems (EP/P020631/1) and ABC: Adaptive Brokerage for Cloud (EP/R010528/1); Royal Academy of Engineering under the Research Fellowship scheme.Increasingly prevalent asymmetric multicore processors (AMP) are necessary for delivering performance in the era of limited power budget and dark silicon. However, the software fails to use them efficiently. OS schedulers, in particular, handle asymmetry only under restricted scenarios. We have efficient symmetric schedulers, efficient asymmetric schedulers for single-threaded workloads, and efficient asymmetric schedulers for single program workloads. What we do not have is a scheduler that can handle all runtime factors affecting AMP for multi-threaded multi-programmed workloads. This paper introduces the first general purpose asymmetry-aware scheduler for multi-threaded multi-programmed workloads. It estimates the performance of each thread on each type of core and identifies communication patterns and bottleneck threads. The scheduler then makes coordinated core assignment and thread selection decisions that still provide each application its fair share of the processor's time. We evaluate our approach using the GEM5 simulator on four distinct big.LITTLE configurations and 26 mixed workloads composed of PARSEC and SPLASH2 benchmarks. Compared to the state-of-the art Linux CFS and AMP-aware schedulers, we demonstrate performance gains of up to 25% and 5% to 15% on average depending on the hardware setup.Postprin
    • 

    corecore