1,509 research outputs found

    Review of QSAR Models and Software Tools for Predicting of Genotoxicity and Carcinogenicity

    Get PDF
    This review of QSARs for genotoxicity and carcinogenicity was performed in a broad sense, considering both models available in software tools and models that are published in the literature. The review considered the potential applicability of diverse models to pesticides as well as to other types of regulated chemicals and pharmaceuticals. The availability of models and information on their applicability is summarised in tables, and a range of illustrative or informative examples are described in more detail in the text. In many cases, promising models were identified but they are still at the research stage. For routine application in a regulatory setting, further efforts will be needed to explore the applicability of such models for specific purposes, and to implement them in a practically useful form (i.e. user-friendly software). It is also noted that a range of software tools are research tools suitable for model development, and these require more specialised expertise than other tools that are aimed primarily at end-users such as risk assessors. It is concluded that the most useful models are those which are implemented in software tools and associated with transparent documentation on the model development and validation process. However, it is emphasised that the assessment of model predictions requires a reasonable amount of QSAR knowledge, even if it is not necessary to be a QSAR practitioner.JRC.DG.I.6-Systems toxicolog

    In silico drug repositioning of FDA-approved drugs to predict new inhibitors for alpha-synuclein aggregation

    Get PDF
    One of the hallmarks of Parkinson's disease (PD), a long-term neurodegenerative syndrome, is the accumulation of alpha-synuclein (α-syn) fibrils. Despite numerous studies and efforts, inhibition of α-syn protein aggregation is still a challenge. To overcome this issue, we propose an in silico pharmacophore-based repositioning strategy, to find a pharmaceutical drug that, in addition to their defined role, can be used to prevent aggregation of the α-syn protein. Ligand-based pharmacophore modeling was developed and the best model was selected with validation parameters including 72 % sensitivity, 98 % specificity and goodness score about 0.7. The optimal model has three groups of hydrogen bond donor (HBD), three groups of hydrogen bond acceptor (HBA), and two aromatic rings (AR). The FDA-Approved reports in the ZINC15 database were screened with the pharmacophore model taken from inhibitor compounds. The model identified 22 hits, as promising candidate drugs for Parkinson's therapy. It is noteworthy that among these, 10 drugs have been reported to inhibition of α-syn aggregation or treat/reduce Parkinson's pathogenesis. This model was used to virtual screen ZINC, NCI databases, and natural products from the pomegranate. The results of this screen were filtered for their inability to cross the blood-brain barrier, poor oral bioavailability, etc. Finally, the selected compounds of two ZINC and NCI databases were combined and structurally clustered. Remained compounds were clustered in 28 different clusters, and the 17 compounds were introduced as final candidates

    Review of Data Sources, QSARs and Integrated Testing Strategies for Skin Sensitisation

    Get PDF
    This review collects information on sources of skin sensitisation data and computational tools for the estimation of skin sensitisation potential, such as expert systems and (quantitative) structure-activity relationship (QSAR) models. The review also captures current thinking of what constitutes an integrated testing strategy (ITS) for this endpoint. The emphasis of the review is on the usefulness of the models for the regulatory assessment of chemicals, particularly for the purposes of the new European legislation for the Registration, Evaluation, Authorisation and Restriction of CHemicals (REACH), which entered into force on 1 June 2007. Since there are no specific databases for skin sensitisation currently available, a description of experimental data found in various literature sources is provided. General (global) models, models for specific chemical classes and mechanisms of action and expert systems are summarised. This review was prepared as a contribution to the EU funded Integrated Project, OSIRIS.JRC.I.3-Consumer products safety and qualit

    Skin Sensitisation (Q)SARs/Expert Systems: from Past, Present to Future

    Get PDF
    This review describes the state of the art of available (Q)SARs/expert systems for skin sensitisation and evaluates their utility for potential regulatory use. There is a strong mechanistic understanding with respect to skin sensitisation which has facilitated the development of different models. Most existing models fall into one of two main categories either they are local in nature, usually specific to a chemical class or reaction chemical mechanism or else they are global in form, derived empirically using statistical methods. Some of the published global QSARs available have been recently characterised and evaluated elsewhere in accordance with the OECD principles. An overview of expert systems capable of predicting skin sensitisation is also provided. Recently, a new perspective regarding the development of mechanistic skin sensitisation QSARs so-called Quantitative Mechanistic Modelling (QMM) has been proposed, where reactivity and hydrophobicity, are used as the key parameters in mathematically modelling skin sensitisation. Whilst hydrophobicity can be conveniently modelled using log P, the octanol-water partition coefficient; reactivity is less readily determined from chemical structure. Initiatives are in progress to generate reactivity data for reactions relevant to skin sensitisation but more resources are required to realise a comprehensive set of reactivity data. This is a fundamental and necessary requirement for the future assessment of skin sensitisation.JRC.I.3-Toxicology and chemical substance

    Review of QSAR Models and Software Tools for predicting Biokinetic Properties

    Get PDF
    In the assessment of industrial chemicals, cosmetic ingredients, and active substances in pesticides and biocides, metabolites and degradates are rarely tested for their toxicologcal effects in mammals. In the interests of animal welfare and cost-effectiveness, alternatives to animal testing are needed in the evaluation of these types of chemicals. In this report we review the current status of various types of in silico estimation methods for Absorption, Distribution, Metabolism and Excretion (ADME) properties, which are often important in discriminating between the toxicological profiles of parent compounds and their metabolites/degradation products. The review was performed in a broad sense, with emphasis on QSARs and rule-based approaches and their applicability to estimation of oral bioavailability, human intestinal absorption, blood-brain barrier penetration, plasma protein binding, metabolism and. This revealed a vast and rapidly growing literature and a range of software tools. While it is difficult to give firm conclusions on the applicability of such tools, it is clear that many have been developed with pharmaceutical applications in mind, and as such may not be applicable to other types of chemicals (this would require further research investigation). On the other hand, a range of predictive methodologies have been explored and found promising, so there is merit in pursuing their applicability in the assessment of other types of chemicals and products. Many of the software tools are not transparent in terms of their predictive algorithms or underlying datasets. However, the literature identifies a set of commonly used descriptors that have been found useful in ADME prediction, so further research and model development activities could be based on such studies.JRC.DG.I.6-Systems toxicolog

    Review of QSAR Models and Software Tools for Predicting Developmental and Reproductive Toxicity

    Get PDF
    This report provides a state-of-the-art review of available computational models for developmental and reproductive toxicity, including Quantitative Structure-Activity Relationship (QSARs) and related estimation methods such as decision tree approaches and expert systems. At present, there are relatively few models for developmental and reproductive toxicity endpoints, and those available have limited applicability domains. This situation is partly due to the biological complexity of the endpoint, which covers many incompletely understood mechanisms of action, and partly due to the paucity and heterogeneity of high quality data suitable for model development. In contrast, there is an extensive and growing range of software and literature models for predicting endocrine-related activities, in particular models for oestrogen and androgen activity. There is a considerable need to further develop and characterise in silico models for developmental and reproductive toxicity, and to explore their applicability in a regulatory setting.JRC.DG.I.6-Systems toxicolog

    VirtualTaste: a web server for the prediction of organoleptic properties of chemical compounds

    Get PDF
    Taste is one of the crucial organoleptic properties involved in the perception of food by humans. Taste of a chemical compound present in food stimulates us to take in food and avoid poisons. Bitter taste of drugs presents compliance problems and early flagging of potential bitterness of a drug candidate may help with its further development. Similarly, the taste of chemicals present in food is important for evaluation of food quality in the industry. In this work, we have implemented machine learning models to predict three different taste endpoints-sweet, bitter and sour. The VirtualTaste models achieved an overall accuracy of 90% and an AUC of 0.98 in 10-fold cross-validation and in an independent test set. The web server takes a two-dimensional chemical structure as input and reports the chemical's taste profile for three tastes-using molecular fingerprints along with confidence scores, including information on similar compounds with known activity from the training set and an overall radar chart. Additionally, insights into 25 bitter receptors are also provided via target prediction for the predicted bitter compounds. VirtualTaste, to the best of our knowledge, is the first freely available web-based platform for the prediction of three different tastes of compounds. It is accessible via http://virtualtaste.charite.de/VirtualTaste/without any login requirements and is free to use

    Identification of \u27structural alerts\u27 and associated mechanisms of action of mammary gland carcinogens in female rodents

    Get PDF
    A new structure-activity relationship (SAR) approach to modeling was utilized to study mammary gland carcinogens. A set of chemicals tested for mammary tumorigenesis that have been analyzed in the Carcinogenic Potency Database (CPDB) were subjected to several computational analyses in an attempt to predict each chemical’s carcinogenic potential. A total of six learning sets (rat and mouse mammary gland carcinogen, CPDB rat and mouse, and female-specific rodent models) were developed and validated using a SAR modeling algorithm called categorical-SAR (cat-SAR). The predictive cat-SAR program evaluates active and inactive compounds of known biological activity and predicts their biological activity from this categorical data. Overall, this study demonstrates the usefulness of cat-SAR and its successful application in developing ‘structural alerts’ to breast carcinogenicity. The resulting rat and mouse mammary carcinogen models achieved an 82.0% (sensitivity 76.7%; specificity 87.5%) and 80.6% (sensitivity 80%; specificity 81.8%) concordance between experimental and predicted results, respectively. Likewise, the general CPDB mouse and rat models were both 70% predictive. Corresponding sensitivity and specificity values were 74.2 and 66.7% and 70.4 and 68.5%, respectively. The analyses indicate the capability of cat-SAR in identifying molecular fragments that potentially interact with cellular components present only in the targeted cell type (e.g., breast tissue cells). Moreover, this method is expected to help pre-determine structural alerts to carcinogen-induced mammary cancer. Identification of these ‘structural alerts’ can assist in understanding mechanisms involved in making a normal breast cell cancerous. Using the results of these analyses, it is possible to classify and rank structurally diverse chemicals as to their potential to induce mammary gland cancer
    • …
    corecore