57,978 research outputs found

    Sensitive Instances of the Constraint Satisfaction Problem

    Get PDF
    We investigate the impact of modifying the constraining relations of a Constraint Satisfaction Problem (CSP) instance, with a fixed template, on the set of solutions of the instance. More precisely we investigate sensitive instances: an instance of the CSP is called sensitive, if removing any tuple from any constraining relation invalidates some solution of the instance. Equivalently, one could require that every tuple from any one of its constraints extends to a solution of the instance. Clearly, any non-trivial template has instances which are not sensitive. Therefore we follow the direction proposed (in the context of strict width) by Feder and Vardi (SICOMP 1999) and require that only the instances produced by a local consistency checking algorithm are sensitive. In the language of the algebraic approach to the CSP we show that a finite idempotent algebra A\mathbf{A} has a k+2k+2 variable near unanimity term operation if and only if any instance that results from running the (k,k+1)(k, k+1)-consistency algorithm on an instance over A2\mathbf{A}^2 is sensitive. A version of our result, without idempotency but with the sensitivity condition holding in a variety of algebras, settles a question posed by G. Bergman about systems of projections of algebras that arise from some subalgebra of a finite product of algebras. Our results hold for infinite (albeit in the case of A\mathbf{A} idempotent) algebras as well and exhibit a surprising similarity to the strict width kk condition proposed by Feder and Vardi. Both conditions can be characterized by the existence of a near unanimity operation, but the arities of the operations differ by 1

    Sensitive instances of the constraint satisfaction problem

    Get PDF
    We investigate the impact of modifying the constraining relations of a Constraint SatisfactionProblem (CSP) instance, with a fixed template, on the set of solutions of the instance. More preciselywe investigate sensitive instances: an instance of theCSPis called sensitive, if removing any tuplefrom any constraining relation invalidates some solution of the instance. Equivalently, one couldrequire that every tuple from any one of its constraints extends to a solution of the instance.Clearly, any non-trivial template has instances which are not sensitive. Therefore we follow thedirection proposed (in the context of strict width) by Feder and Vardi in [13] and require that onlythe instances produced by a local consistency checking algorithm are sensitive. In the languageof the algebraic approach to theCSPwe show that a finite idempotent algebraAhas ak+ 2variable near unanimity term operation if and only if any instance that results from running the(k, k+ 1)-consistency algorithm on an instance overA2is sensitive.A version of our result, without idempotency but with the sensitivity condition holding in avariety of algebras, settles a question posed by G. Bergman about systems of projections of algebrasthat arise from some subalgebra of a finite product of algebras.Our results hold for infinite (albeit in the case ofAidempotent) algebras as well and exhibit asurprising similarity to the strict widthkcondition proposed by Feder and Vardi. Both conditionscan be characterized by the existence of a near unanimity operation, but the arities of the operationsdiffer by1

    Metareasoning about propagators for constraint satisfaction

    Get PDF
    Given the breadth of constraint satisfaction problems (CSPs) and the wide variety of CSP solvers, it is often very difficult to determine a priori which solving method is best suited to a problem. This work explores the use of machine learning to predict which solving method will be most effective for a given problem. We use four different problem sets to determine the CSP attributes that can be used to determine which solving method should be applied. After choosing an appropriate set of attributes, we determine how well j48 decision trees can predict which solving method to apply. Furthermore, we take a cost sensitive approach such that problem instances where there is a great difference in runtime between algorithms are emphasized. We also attempt to use information gained on one class of problems to inform decisions about a second class of problems. Finally, we show that the additional costs of deciding which method to apply are outweighed by the time savings compared to applying the same solving method to all problem instances

    An Enhanced Features Extractor for a Portfolio of Constraint Solvers

    Get PDF
    Recent research has shown that a single arbitrarily efficient solver can be significantly outperformed by a portfolio of possibly slower on-average solvers. The solver selection is usually done by means of (un)supervised learning techniques which exploit features extracted from the problem specification. In this paper we present an useful and flexible framework that is able to extract an extensive set of features from a Constraint (Satisfaction/Optimization) Problem defined in possibly different modeling languages: MiniZinc, FlatZinc or XCSP. We also report some empirical results showing that the performances that can be obtained using these features are effective and competitive with state of the art CSP portfolio techniques

    ASlib: A Benchmark Library for Algorithm Selection

    Full text link
    The task of algorithm selection involves choosing an algorithm from a set of algorithms on a per-instance basis in order to exploit the varying performance of algorithms over a set of instances. The algorithm selection problem is attracting increasing attention from researchers and practitioners in AI. Years of fruitful applications in a number of domains have resulted in a large amount of data, but the community lacks a standard format or repository for this data. This situation makes it difficult to share and compare different approaches effectively, as is done in other, more established fields. It also unnecessarily hinders new researchers who want to work in this area. To address this problem, we introduce a standardized format for representing algorithm selection scenarios and a repository that contains a growing number of data sets from the literature. Our format has been designed to be able to express a wide variety of different scenarios. Demonstrating the breadth and power of our platform, we describe a set of example experiments that build and evaluate algorithm selection models through a common interface. The results display the potential of algorithm selection to achieve significant performance improvements across a broad range of problems and algorithms.Comment: Accepted to be published in Artificial Intelligence Journa

    Rational Deployment of CSP Heuristics

    Full text link
    Heuristics are crucial tools in decreasing search effort in varied fields of AI. In order to be effective, a heuristic must be efficient to compute, as well as provide useful information to the search algorithm. However, some well-known heuristics which do well in reducing backtracking are so heavy that the gain of deploying them in a search algorithm might be outweighed by their overhead. We propose a rational metareasoning approach to decide when to deploy heuristics, using CSP backtracking search as a case study. In particular, a value of information approach is taken to adaptive deployment of solution-count estimation heuristics for value ordering. Empirical results show that indeed the proposed mechanism successfully balances the tradeoff between decreasing backtracking and heuristic computational overhead, resulting in a significant overall search time reduction.Comment: 7 pages, 2 figures, to appear in IJCAI-2011, http://www.ijcai.org

    Proteus: A Hierarchical Portfolio of Solvers and Transformations

    Full text link
    In recent years, portfolio approaches to solving SAT problems and CSPs have become increasingly common. There are also a number of different encodings for representing CSPs as SAT instances. In this paper, we leverage advances in both SAT and CSP solving to present a novel hierarchical portfolio-based approach to CSP solving, which we call Proteus, that does not rely purely on CSP solvers. Instead, it may decide that it is best to encode a CSP problem instance into SAT, selecting an appropriate encoding and a corresponding SAT solver. Our experimental evaluation used an instance of Proteus that involved four CSP solvers, three SAT encodings, and six SAT solvers, evaluated on the most challenging problem instances from the CSP solver competitions, involving global and intensional constraints. We show that significant performance improvements can be achieved by Proteus obtained by exploiting alternative view-points and solvers for combinatorial problem-solving.Comment: 11th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. The final publication is available at link.springer.co
    • …
    corecore