2,881 research outputs found

    Utility Cost of Formal Privacy for Releasing National Employer-Employee Statistics

    Get PDF
    National statistical agencies around the world publish tabular summaries based on combined employer-employee (ER-EE) data. The privacy of both individuals and business establishments that feature in these data are protected by law in most countries. These data are currently released using a variety of statistical disclosure limitation (SDL) techniques that do not reveal the exact characteristics of particular employers and employees, but lack provable privacy guarantees limiting inferential disclosures. In this work, we present novel algorithms for releasing tabular summaries of linked ER-EE data with formal, provable guarantees of privacy. We show that state-of-the-art differentially private algorithms add too much noise for the output to be useful. Instead, we identify the privacy requirements mandated by current interpretations of the relevant laws, and formalize them using the Pufferfish framework. We then develop new privacy definitions that are customized to ER-EE data and satisfy the statutory privacy requirements. We implement the experiments in this paper on production data gathered by the U.S. Census Bureau. An empirical evaluation of utility for these data shows that for reasonable values of the privacy-loss parameter ϵ≥1, the additive error introduced by our provably private algorithms is comparable, and in some cases better, than the error introduced by existing SDL techniques that have no provable privacy guarantees. For some complex queries currently published, however, our algorithms do not have utility comparable to the existing traditiona

    Revisiting the Economics of Privacy: Population Statistics and Confidentiality Protection as Public Goods

    Get PDF
    This paper has been replaced with http://digitalcommons.ilr.cornell.edu/ldi/37. We consider the problem of the public release of statistical information about a population–explicitly accounting for the public-good properties of both data accuracy and privacy loss. We first consider the implications of adding the public-good component to recently published models of private data publication under differential privacy guarantees using a Vickery-Clark-Groves mechanism and a Lindahl mechanism. We show that data quality will be inefficiently under-supplied. Next, we develop a standard social planner’s problem using the technology set implied by (ε, δ)-differential privacy with (α, β)-accuracy for the Private Multiplicative Weights query release mechanism to study the properties of optimal provision of data accuracy and privacy loss when both are public goods. Using the production possibilities frontier implied by this technology, explicitly parameterized interdependent preferences, and the social welfare function, we display properties of the solution to the social planner’s problem. Our results directly quantify the optimal choice of data accuracy and privacy loss as functions of the technology and preference parameters. Some of these properties can be quantified using population statistics on marginal preferences and correlations between income, data accuracy preferences, and privacy loss preferences that are available from survey data. Our results show that government data custodians should publish more accurate statistics with weaker privacy guarantees than would occur with purely private data publishing. Our statistical results using the General Social Survey and the Cornell National Social Survey indicate that the welfare losses from under-providing data accuracy while over-providing privacy protection can be substantial

    "I need a better description'': An Investigation Into User Expectations For Differential Privacy

    Get PDF
    Despite recent widespread deployment of differential privacy, relatively little is known about what users think of differential privacy. In this work, we seek to explore users' privacy expectations related to differential privacy. Specifically, we investigate (1) whether users care about the protections afforded by differential privacy, and (2) whether they are therefore more willing to share their data with differentially private systems. Further, we attempt to understand (3) users' privacy expectations of the differentially private systems they may encounter in practice and (4) their willingness to share data in such systems. To answer these questions, we use a series of rigorously conducted surveys (n=2424). We find that users care about the kinds of information leaks against which differential privacy protects and are more willing to share their private information when the risks of these leaks are less likely to happen. Additionally, we find that the ways in which differential privacy is described in-the-wild haphazardly set users' privacy expectations, which can be misleading depending on the deployment. We synthesize our results into a framework for understanding a user's willingness to share information with differentially private systems, which takes into account the interaction between the user's prior privacy concerns and how differential privacy is described

    Sharing Social Network Data: Differentially Private Estimation of Exponential-Family Random Graph Models

    Get PDF
    Motivated by a real-life problem of sharing social network data that contain sensitive personal information, we propose a novel approach to release and analyze synthetic graphs in order to protect privacy of individual relationships captured by the social network while maintaining the validity of statistical results. A case study using a version of the Enron e-mail corpus dataset demonstrates the application and usefulness of the proposed techniques in solving the challenging problem of maintaining privacy \emph{and} supporting open access to network data to ensure reproducibility of existing studies and discovering new scientific insights that can be obtained by analyzing such data. We use a simple yet effective randomized response mechanism to generate synthetic networks under ϵ\epsilon-edge differential privacy, and then use likelihood based inference for missing data and Markov chain Monte Carlo techniques to fit exponential-family random graph models to the generated synthetic networks.Comment: Updated, 39 page
    • …
    corecore