2,834 research outputs found

    Sensing Throughput Tradeoff for Cognitive Radio Networks with Noise Variance Uncertainty

    Full text link
    This paper proposes novel spectrum sensing algorithm, and examines the sensing throughput tradeoff for cognitive radio (CR) networks under noise variance uncertainty. It is assumed that there are one white sub-band, and one target sub-band which is either white or non-white. Under this assumption, first we propose a novel generalized energy detector (GED) for examining the target sub-band by exploiting the noise information of the white sub-band, then, we study the tradeoff between the sensing time and achievable throughput of the CR network. To study this tradeoff, we consider the sensing time optimization for maximizing the throughput of the CR network while appropriately protecting the primary network. The sensing time is optimized by utilizing the derived detection and false alarm probabilities of the GED. The proposed GED does not suffer from signal to noise ratio (SNR) wall (i.e., robust against noise variance uncertainty) and outperforms the existing signal detectors. Moreover, the relationship between the proposed GED and conventional energy detector (CED) is quantified analytically. We show that the optimal sensing times with perfect and imperfect noise variances are not the same. In particular, when the frame duration is 2s, and SNR is -20dB, and each of the bandwidths of the white and target sub-bands is 6MHz, the optimal sensing times are 28.5ms and 50.6ms with perfect and imperfect noise variances, respectively.Comment: Accepted in CROWNCOM, June 2014, Oulu, Finlan

    Listen-and-Talk: Protocol Design and Analysis for Full-duplex Cognitive Radio Networks

    Full text link
    In traditional cognitive radio networks, secondary users (SUs) typically access the spectrum of primary users (PUs) by a two-stage "listen-before-talk" (LBT) protocol, i.e., SUs sense the spectrum holes in the first stage before transmitting in the second. However, there exist two major problems: 1) transmission time reduction due to sensing, and 2) sensing accuracy impairment due to data transmission. In this paper, we propose a "listen-and-talk" (LAT) protocol with the help of full-duplex (FD) technique that allows SUs to simultaneously sense and access the vacant spectrum. Spectrum utilization performance is carefully analyzed, with the closed-form spectrum waste ratio and collision ratio with the PU provided. Also, regarding the secondary throughput, we report the existence of a tradeoff between the secondary transmit power and throughput. Based on the power-throughput tradeoff, we derive the analytical local optimal transmit power for SUs to achieve both high throughput and satisfying sensing accuracy. Numerical results are given to verify the proposed protocol and the theoretical results

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Throughput analysis for cognitive radio networks with multiple primary users and imperfect spectrum sensing

    Get PDF
    In cognitive radio networks, the licensed frequency bands of the primary users (PUs) are available to the secondary user (SU) provided that they do not cause significant interference to the PUs. In this study, the authors analysed the normalised throughput of the SU with multiple PUs coexisting under any frequency division multiple access communication protocol. The authors consider a cognitive radio transmission where the frame structure consists of sensing and data transmission slots. In order to achieve the maximum normalised throughput of the SU and control the interference level to the legal PUs, the optimal frame length of the SU is found via simulation. In this context, a new analytical formula has been expressed for the achievable normalised throughput of SU with multiple PUs under prefect and imperfect spectrum sensing scenarios. Moreover, the impact of imperfect sensing, variable frame length of SU and the variable PU traffic loads, on the normalised throughput has been critically investigated. It has been shown that the analytical and simulation results are in perfect agreement. The authors analytical results are much useful to determine how to select the frame duration length subject to the parameters of cognitive radio network, such as network traffic load, achievable sensing accuracy and number of coexisting PUs

    Sensing-Throughput Tradeoff for Interweave Cognitive Radio System: A Deployment-Centric Viewpoint

    Get PDF
    Secondary access to the licensed spectrum is viable only if interference is avoided at the primary system. In this regard, different paradigms have been conceptualized in the existing literature. Of these, Interweave Systems (ISs) that employ spectrum sensing have been widely investigated. Baseline models investigated in the literature characterize the performance of IS in terms of a sensing-throughput tradeoff, however, this characterization assumes the knowledge of the involved channels at the secondary transmitter, which is unavailable in practice. Motivated by this fact, we establish a novel approach that incorporates channel estimation in the system model, and consequently investigate the impact of imperfect channel estimation on the performance of the IS. More particularly, the variation induced in the detection probability affects the detector's performance at the secondary transmitter, which may result in severe interference at the primary users. In this view, we propose to employ average and outage constraints on the detection probability, in order to capture the performance of the IS. Our analysis reveals that with an appropriate choice of the estimation time determined by the proposed model, the degradation in performance of the IS can be effectively controlled, and subsequently the achievable secondary throughput can be significantly enhanced.Comment: 13 pages, 10 figures, Accepted to be published in IEEE Transactions on Wireless Communication

    Spectral and Energy Efficiency in Cognitive Radio Systems with Unslotted Primary Users and Sensing Uncertainty

    Full text link
    This paper studies energy efficiency (EE) and average throughput maximization for cognitive radio systems in the presence of unslotted primary users. It is assumed that primary user activity follows an ON-OFF alternating renewal process. Secondary users first sense the channel possibly with errors in the form of miss detections and false alarms, and then start the data transmission only if no primary user activity is detected. The secondary user transmission is subject to constraints on collision duration ratio, which is defined as the ratio of average collision duration to transmission duration. In this setting, the optimal power control policy which maximizes the EE of the secondary users or maximizes the average throughput while satisfying a minimum required EE under average/peak transmit power and average interference power constraints are derived. Subsequently, low-complexity algorithms for jointly determining the optimal power level and frame duration are proposed. The impact of probabilities of detection and false alarm, transmit and interference power constraints on the EE, average throughput of the secondary users, optimal transmission power, and the collisions with primary user transmissions are evaluated. In addition, some important properties of the collision duration ratio are investigated. The tradeoff between the EE and average throughput under imperfect sensing decisions and different primary user traffic are further analyzed.Comment: This paper is accepted for publication in IEEE Transactions on Communication
    • …
    corecore