2,483 research outputs found

    Radio-frequency methods for Majorana-based quantum devices: fast charge sensing and phase diagram mapping

    Get PDF
    Radio-frequency (RF) reflectometry is implemented in hybrid semiconductor-superconductor nanowire systems designed to probe Majorana zero modes. Two approaches are presented. In the first, hybrid nanowire-based devices are part of a resonant circuit, allowing conductance to be measured as a function of several gate voltages ~40 times faster than using conventional low-frequency lock-in methods. In the second, nanowire devices are capacitively coupled to a nearby RF single-electron transistor made from a separate nanowire, allowing RF detection of charge, including charge-only measurement of the crossover from 2e inter-island charge transitions at zero magnetic field to 1e transitions at axial magnetic fields above 0.6 T, where a topological state is expected. Single-electron sensing yields signal-to-noise exceeding 3 and visibility 99.8% for a measurement time of 1 {\mu}s

    Development of superconducting YBa2Cu3O(x) wires with low resistance electrical contacts

    Get PDF
    Materials exhibiting superconductivity above liquid nitrogen temperatures (77 K) will enable new applications of this phenomena. One of the first commercial applications of this technology will be superconducting magnets for medical imaging. However, a large number of aerospace applications of the high temperature superconducting materials have also been identified. These include magnetic suspension and balance of models in wind tunnels and resistanceless leads to anemometers. The development of superconducting wires fabricated from the ceramic materials is critical for these applications. The progress in application of a patented fiber process developed by Clemson University for the fabrication of superconducting wires is reviewed. The effect of particle size and heat treatment on the quality of materials is discussed. Recent advances made at Christopher Newport College in the development of micro-ohm resistance electrical contacts which are capable of carrying the highest reported direct current to this material is presented

    Report of the Electromechanical Subsystems Panel

    Get PDF
    Deficiencies in electromechanical flight technology are evaluated and development recommendations are made. Specific items discussed include magnetic bearings, lubrication for long life, signal and power transfer devices, servo sensing devices, deployment/retraction devices, cryogenic devices, data storage, and ordnance substitutes

    Direct cavity detection of Majorana pairs

    Full text link
    No experiment could directly test the particle/antiparticle duality of Majorana fermions, so far. However, this property represents a necessary ingredient towards the realization of topological quantum computing schemes. Here, we show how to complete this task by using microwave techniques. The direct coupling between a pair of overlapping Majorana bound states and the electric field from a microwave cavity is extremely difficult to detect due to the self-adjoint character of Majorana fermions which forbids direct energy exchanges with the cavity. We show theoretically how this problem can be circumvented by using photo-assisted tunneling to fermionic reservoirs. The absence of direct microwave transition inside the Majorana pair in spite of the light-Majorana coupling would represent a smoking gun for the Majorana self-adjoint character.Comment: 6 pages, 4 figure
    corecore