146 research outputs found

    High mobility in OFDM based wireless communication systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) has been adopted as the transmission scheme in most of the wireless systems we use on a daily basis. It brings with it several inherent advantages that make it an ideal waveform candidate in the physical layer. However, OFDM based wireless systems are severely affected in High Mobility scenarios. In this thesis, we investigate the effects of mobility on OFDM based wireless systems and develop novel techniques to estimate the channel and compensate its effects at the receiver. Compressed Sensing (CS) based channel estimation techniques like the Rake Matching Pursuit (RMP) and the Gradient Rake Matching Pursuit (GRMP) are developed to estimate the channel in a precise, robust and computationally efficient manner. In addition to this, a Cognitive Framework that can detect the mobility in the channel and configure an optimal estimation scheme is also developed and tested. The Cognitive Framework ensures a computationally optimal channel estimation scheme in all channel conditions. We also demonstrate that the proposed schemes can be adapted to other wireless standards easily. Accordingly, evaluation is done for three current broadcast, broadband and cellular standards. The results show the clear benefit of the proposed schemes in enabling high mobility in OFDM based wireless communication systems.Orthogonal Frequency Division Multiplexing (OFDM) wurde als Übertragungsschema in die meisten drahtlosen Systemen, die wir täglich verwenden, übernommen. Es bringt mehrere inhärente Vorteile mit sich, die es zu einem idealen Waveform-Kandidaten in der Bitübertragungsschicht (Physical Layer) machen. Allerdings sind OFDM-basierte drahtlose Systeme in Szenarien mit hoher Mobilität stark beeinträchtigt. In dieser Arbeit untersuchen wir die Auswirkungen der Mobilität auf OFDM-basierte drahtlose Systeme und entwickeln neuartige Techniken, um das Verhalten des Kanals abzuschätzen und seine Auswirkungen am Empfänger zu kompensieren. Auf Compressed Sensing (CS) basierende Kanalschätzverfahren wie das Rake Matching Pursuit (RMP) und das Gradient Rake Matching Pursuit (GRMP) werden entwickelt, um den Kanal präzise, robust und rechnerisch effizient abzuschätzen. Darüber hinaus wird ein Cognitive Framework entwickelt und getestet, das die Mobilität im Kanal erkennt und ein optimales Schätzungsschema konfiguriert. Das Cognitive Framework gewährleistet ein rechnerisch optimales Kanalschätzungsschema für alle möglichen Kanalbedingungen. Wir zeigen außerdem, dass die vorgeschlagenen Schemata auch leicht an andere Funkstandards angepasst werden können. Dementsprechend wird eine Evaluierung für drei aktuelle Rundfunk-, Breitband- und Mobilfunkstandards durchgeführt. Die Ergebnisse zeigen den klaren Vorteil der vorgeschlagenen Schemata bei der Ermöglichung hoher Mobilität in OFDM-basierten drahtlosen Kommunikationssystemen

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    AFDM vs OTFS: A Comparative Study of Promising Waveforms for ISAC in Doubly-Dispersive Channels

    Full text link
    This white paper aims to briefly describe a proposed article that will provide a thorough comparative study of waveforms designed to exploit the features of doubly-dispersive channels arising in heterogeneous high-mobility scenarios as expected in the beyond fifth generation (B5G) and sixth generation (6G), in relation to their suitability to integrated sensing and communications (ISAC) systems. In particular, the full article will compare the well-established delay-Doppler domain-based orthognal time frequency space (OTFS) and the recently proposed chirp domain-based affine frequency division multiplexing (AFDM) waveforms. Both these waveforms are designed based on a full delay- Doppler representation of the time variant (TV) multipath channel, yielding not only robustness and orthogonality of information symbols in high-mobility scenarios, but also a beneficial implication for environment target detection through the inherent capability of estimating the path delay and Doppler shifts, which are standard radar parameters. These modulation schemes are distinct candidates for ISAC in B5G/6G systems, such that a thorough study of their advantages, shortcomings, implications to signal processing, and performance of communication and sensing functions are well in order. In light of the above, a sample of the intended contribution (Special Issue paper) is provided below

    Cooperative Wideband Spectrum Sensing Based on Joint Sparsity

    Get PDF
    COOPERATIVE WIDEBAND SPECTRUM SENSING BASED ON JOINT SPARSITY By Ghazaleh Jowkar, Master of Science A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University Virginia Commonwealth University 2017 Major Director: Dr. Ruixin Niu, Associate Professor of Department of Electrical and Computer Engineering In this thesis, the problem of wideband spectrum sensing in cognitive radio (CR) networks using sub-Nyquist sampling and sparse signal processing techniques is investigated. To mitigate multi-path fading, it is assumed that a group of spatially dispersed SUs collaborate for wideband spectrum sensing, to determine whether or not a channel is occupied by a primary user (PU). Due to the underutilization of the spectrum by the PUs, the spectrum matrix has only a small number of non-zero rows. In existing state-of-the-art approaches, the spectrum sensing problem was solved using the low-rank matrix completion technique involving matrix nuclear-norm minimization. Motivated by the fact that the spectrum matrix is not only low-rank, but also sparse, a spectrum sensing approach is proposed based on minimizing a mixed-norm of the spectrum matrix instead of low-rank matrix completion to promote the joint sparsity among the column vectors of the spectrum matrix. Simulation results are obtained, which demonstrate that the proposed mixed-norm minimization approach outperforms the low-rank matrix completion based approach, in terms of the PU detection performance. Further we used mixed-norm minimization model in multi time frame detection. Simulation results shows that increasing the number of time frames will increase the detection performance, however, by increasing the number of time frames after a number of times the performance decrease dramatically

    Single- versus Multi-Carrier Terahertz-Band Communications: A Comparative Study

    Full text link
    The prospects of utilizing single-carrier (SC) and multi-carrier (MC) waveforms in future terahertz (THz)-band communication systems remain unresolved. On the one hand, the limited multi-path components at high frequencies result in frequency-flat channels that favor low-complexity wideband SC systems. On the other hand, frequency-dependent molecular absorption and transceiver characteristics and the existence of multi-path components in indoor sub-THz systems can still result in frequency-selective channels, favoring off-the-shelf MC schemes such as orthogonal frequency-division multiplexing (OFDM). Variations of SC/MC designs result in different THz spectrum utilization, but spectral efficiency is not the primary concern with substantial available bandwidths; baseband complexity, power efficiency, and hardware impairment constraints are predominant. This paper presents a comprehensive study of SC/MC modulations for THz communications, utilizing an accurate wideband THz channel model and highlighting the various performance and complexity trade-offs of the candidate schemes. Simulations demonstrate that discrete-Fourier-transform spread orthogonal time-frequency space (DFT-s-OTFS) achieves a lower peak-to-average power ratio (PAPR) than OFDM and OTFS and enhances immunity to THz impairments and Doppler spreads, but at an increased complexity cost. Moreover, DFT-s-OFDM is a promising candidate that increases robustness to THz impairments and phase noise (PHN) at a low PAPR and overall complexity.Comment: 18 pages, 12 figures, journa

    Doctor of Philosophy

    Get PDF
    dissertationThe demand for high speed communication has been increasing in the past two decades. Multicarrier communication technology has been suggested to address this demand. Orthogonal frequency-division multiplexing (OFDM) is the most widely used multicarrier technique. However, OFDM has a number of disadvantages in time-varying channels, multiple access, and cognitive radios. On the other hand, filterbank multicarrier (FBMC) communication has been suggested as an alternative to OFDM that can overcome the disadvantages of OFDM. In this dissertation, we investigate the application of filtered multitone (FMT), a subset of FBMC modulation methods, to slow fading and fast fading channels. We investigate the FMT transmitter and receiver in continuous and discrete time domains. An efficient implementation of FMT systems is derived and the conditions for perfect reconstruction in an FBMC communication system are presented. We derive equations for FMT in slow fading channels that allow evaluation of FMT when applied to mobile wireless communication systems. We consider using fractionally spaced per tone channel equalizers with different number of taps. The numerical results are presented to investigate the performance of these equalizers. The numerical results show that single-tap equalizers suffice for typical wireless channels. The equalizer design study is advanced by introducing adaptive equalizers which use channel estimation. We derive equations for a minimum mean square error (MMSE) channel estimator and improve the channel estimation by considering the finite duration of channel impulse response. The results of optimum equalizers (when channel is known perfectly) are compared with those of the adaptive equalizers, and it is found that a loss of 1 dB or less incurs. We also introduce a new form of FMT which is specially designed to handle doubly dispersive channels. This method is called FMT-dd (FMT for doubly dispersive channels). The proposed FMT-dd is applied to two common methods of data symbol orientation in the time-frequency space grid; namely, rectangular and hexagonal lattices. The performance of these methods along with OFDM and the conventional FMT are compared and a significant improvement in performance is observed. The FMT-dd design is applied to real-world underwater acoustic (UWA) communication channels. The experimental results from an at-sea experiment (ACOMM10) show that this new design provides a significant gain over OFDM. The feasibility of implementing a MIMO system for multicarrier UWA communication channels is studied through computer simulations. Our study emphasizes the bandwidth efficiency of multicarrier MIMO communications .We show that the value of MIMO to UWA communication is very limited
    • …
    corecore