14,246 research outputs found

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    ZOE: A cloud-less dialog-enabled continuous sensing wearable exploiting heterogeneous computation

    Get PDF
    The wearable revolution, as a mass-market phenomenon, has finally arrived. As a result, the question of how wearables should evolve over the next 5 to 10 years is assuming an increasing level of societal and commercial importance. A range of open design and system questions are emerging, for instance: How can wearables shift from being largely health and fitness focused to tracking a wider range of life events? What will become the dominant methods through which users interact with wearables and consume the data collected? Are wearables destined to be cloud and/or smartphone dependent for their operation? Towards building the critical mass of understanding and experience necessary to tackle such questions, we have designed and implemented ZOE – a match-box sized (49g) collar- or lapel-worn sensor that pushes the boundary of wearables in an important set of new directions. First, ZOE aims to perform multiple deep sensor inferences that span key aspects of everyday life (viz. personal, social and place information) on continuously sensed data; while also offering this data not only within conventional analytics but also through a speech dialog system that is able to answer impromptu casual questions from users. (Am I more stressed this week than normal?) Crucially, and unlike other rich-sensing or dialog supporting wearables, ZOE achieves this without cloud or smartphone support – this has important side-effects for privacy since all user information can remain on the device. Second, ZOE incorporates the latest innovations in system-on-a-chip technology together with a custom daughter-board to realize a three-tier low-power processor hierarchy. We pair this hardware design with software techniques that manage system latency while still allowing ZOE to remain energy efficient (with a typical lifespan of 30 hours), despite its high sensing workload, small form-factor, and need to remain responsive to user dialog requests.This work was supported by Microsoft Research through its PhD Scholarship Program. We would also like to thank the anonymous reviewers and our shepherd, Jeremy Gummeson, for helping us improve the paper.This is the author accepted manuscript. The final version is available from ACM at http://dl.acm.org/citation.cfm?doid=2742647.2742672

    NoiseSPY: a real-time mobile phone platform for urban noise monitoring and mapping

    Get PDF
    In this paper we present the design, implementation, evaluation, and user experiences of the NoiseSpy application, our sound sensing system that turns the mobile phone into a low-cost data logger for monitoring environmental noise. It allows users to explore a city area while collaboratively visualizing noise levels in real-time. The software combines the sound levels with GPS data in order to generate a map of sound levels that were encountered during a journey. We report early findings from the trials which have been carried out by cycling couriers who were given Nokia mobile phones equipped with the NoiseSpy software to collect noise data around Cambridge city. Indications are that, not only is the functionality of this personal environmental sensing tool engaging for users, but aspects such as personalization of data, contextual information, and reflection upon both the data and its collection, are important factors in obtaining and retaining their interest

    283110 - Fire Alarm Systems

    Get PDF

    Detecting Social Interactions in Working Environments Through Sensing Technologies

    Get PDF
    The knowledge about social ties among humans is important to optimize several aspects concerning networking in mobile social networks. Generally, ties among people are detected on the base of proximity of people. We discuss here how ties concerning colleagues in an office can be detected by leveraging on a number of sociological markers like co-activity, proximity, speech activity and similarity of locations visited. We present the results from two data gathering campaigns located in Italy and Spain.Ministerio de EconomĂ­a y Competitividad TIN2013-46801-C4-1-RJunta de AndalucĂ­a TIC-805

    The Mercury-Redstone project

    Get PDF
    Mercury-Redstone project development history, and contributions to future manned spacecraft design and operatio

    Fire protection and recompression systems for a hypobaric research chamber Final report, Jul. - Dec. 1967

    Get PDF
    Fire detection-extinguishment and automatic rapid recompression systems for hypobaric spacecraft cabin simulator
    • 

    corecore