23,317 research outputs found

    The body as a reservoir: locomotion and sensing with linear feedback

    Get PDF
    It is known that mass-spring nets have computational power and can be trained to reproduce oscillating patterns. In this work, we extend this idea to locomotion and sensing. We simulate systems made out of bars and springs and show that stable gaits can be maintained by these structures with only linear feedback. We then conduct a classiïŹcation experiment in which the system has to distinguish terrains while maintaining an oscillatory pattern. These experiments indicate that the control of compliant robots can be simpliïŹed if one exploits the computational power of the body’s dynamics

    Distributed Control of Microscopic Robots in Biomedical Applications

    Full text link
    Current developments in molecular electronics, motors and chemical sensors could enable constructing large numbers of devices able to sense, compute and act in micron-scale environments. Such microscopic machines, of sizes comparable to bacteria, could simultaneously monitor entire populations of cells individually in vivo. This paper reviews plausible capabilities for microscopic robots and the physical constraints due to operation in fluids at low Reynolds number, diffusion-limited sensing and thermal noise from Brownian motion. Simple distributed controls are then presented in the context of prototypical biomedical tasks, which require control decisions on millisecond time scales. The resulting behaviors illustrate trade-offs among speed, accuracy and resource use. A specific example is monitoring for patterns of chemicals in a flowing fluid released at chemically distinctive sites. Information collected from a large number of such devices allows estimating properties of cell-sized chemical sources in a macroscopic volume. The microscopic devices moving with the fluid flow in small blood vessels can detect chemicals released by tissues in response to localized injury or infection. We find the devices can readily discriminate a single cell-sized chemical source from the background chemical concentration, providing high-resolution sensing in both time and space. By contrast, such a source would be difficult to distinguish from background when diluted throughout the blood volume as obtained with a blood sample

    Automation and robotics for the Space Exploration Initiative: Results from Project Outreach

    Get PDF
    A total of 52 submissions were received in the Automation and Robotics (A&R) area during Project Outreach. About half of the submissions (24) contained concepts that were judged to have high utility for the Space Exploration Initiative (SEI) and were analyzed further by the robotics panel. These 24 submissions are analyzed here. Three types of robots were proposed in the high scoring submissions: structured task robots (STRs), teleoperated robots (TORs), and surface exploration robots. Several advanced TOR control interface technologies were proposed in the submissions. Many A&R concepts or potential standards were presented or alluded to by the submitters, but few specific technologies or systems were suggested

    Man-machine interface issues in space telerobotics: A JPL research and development program

    Get PDF
    Technology issues related to the use of robots as man-extension or telerobot systems in space are discussed and exemplified. General considerations are presentd on control and information problems in space teleoperation and on the characteristics of Earth orbital teleoperation. The JPL R and D work in the area of man-machine interface devices and techniques for sensing and computer-based control is briefly summarized. The thrust of this R and D effort is to render space teleoperation efficient and safe through the use of devices and techniques which will permit integrated and task-level (intelligent) two-way control communication between human operator and telerobot machine in Earth orbit. Specific control and information display devices and techniques are discussed and exemplified with development results obtained at JPL in recent years

    Bio-inspired Tensegrity Soft Modular Robots

    Get PDF
    In this paper, we introduce a design principle to develop novel soft modular robots based on tensegrity structures and inspired by the cytoskeleton of living cells. We describe a novel strategy to realize tensegrity structures using planar manufacturing techniques, such as 3D printing. We use this strategy to develop icosahedron tensegrity structures with programmable variable stiffness that can deform in a three-dimensional space. We also describe a tendon-driven contraction mechanism to actively control the deformation of the tensegrity mod-ules. Finally, we validate the approach in a modular locomotory worm as a proof of concept.Comment: 12 pages, 7 figures, submitted to Living Machine conference 201
    • 

    corecore