362 research outputs found

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    GeoAI-enhanced Techniques to Support Geographical Knowledge Discovery from Big Geospatial Data

    Get PDF
    abstract: Big data that contain geo-referenced attributes have significantly reformed the way that I process and analyze geospatial data. Compared with the expected benefits received in the data-rich environment, more data have not always contributed to more accurate analysis. “Big but valueless” has becoming a critical concern to the community of GIScience and data-driven geography. As a highly-utilized function of GeoAI technique, deep learning models designed for processing geospatial data integrate powerful computing hardware and deep neural networks into various dimensions of geography to effectively discover the representation of data. However, limitations of these deep learning models have also been reported when People may have to spend much time on preparing training data for implementing a deep learning model. The objective of this dissertation research is to promote state-of-the-art deep learning models in discovering the representation, value and hidden knowledge of GIS and remote sensing data, through three research approaches. The first methodological framework aims to unify varied shadow into limited number of patterns, with the convolutional neural network (CNNs)-powered shape classification, multifarious shadow shapes with a limited number of representative shadow patterns for efficient shadow-based building height estimation. The second research focus integrates semantic analysis into a framework of various state-of-the-art CNNs to support human-level understanding of map content. The final research approach of this dissertation focuses on normalizing geospatial domain knowledge to promote the transferability of a CNN’s model to land-use/land-cover classification. This research reports a method designed to discover detailed land-use/land-cover types that might be challenging for a state-of-the-art CNN’s model that previously performed well on land-cover classification only.Dissertation/ThesisDoctoral Dissertation Geography 201

    Urban Sprawl and COVID-19 Impact Analysis by Integrating Deep Learning with Google Earth Engine

    Get PDF
    Timely information on land use, vegetation coverage, and air and water quality, are crucial for monitoring and managing territories, especially for areas in which there is dynamic urban expansion. However, getting accessible, accurate, and reliable information is not an easy task, since the significant increase in remote sensing data volume poses challenges for the timely processing and analysis of the resulting massive data volume. From this perspective, classical methods for urban monitoring present some limitations and more innovative technologies, such as artificial-intelligence-based algorithms, must be exploited, together with performing cloud platforms and ad hoc pre-processing steps. To this end, this paper presents an approach to the use of cloud-enabled deep-learning technology for urban sprawl detection and monitoring, through the fusion of optical and synthetic aperture radar data, by integrating the Google Earth Engine cloud platform with deep-learning techniques through the use of the open-source TensorFlow library. The model, based on a U-Net architecture, was applied to evaluate urban changes in Phoenix, the second fastest-growing metropolitan area in the United States. The available ancillary information on newly built areas showed good agreement with the produced change detection maps. Moreover, the results were temporally related to the appearance of the SARS-CoV-2 (commonly known as COVID-19) pandemic, showing a decrease in urban expansion during the event. The proposed solution may be employed for the efficient management of dynamic urban areas, providing a decision support system to help policy makers in the measurement of changes in territories and to monitor their impact on phenomena related to urbanization growth and density. The reference data were manually derived by the authors over an area of approximately 216 km2, referring to 2019, based on the visual interpretation of high resolution images, and are openly available

    Visually-Enabled Active Deep Learning for (Geo) Text and Image Classification: A Review

    Get PDF
    This paper investigates recent research on active learning for (geo) text and image classification, with an emphasis on methods that combine visual analytics and/or deep learning. Deep learning has attracted substantial attention across many domains of science and practice, because it can find intricate patterns in big data; but successful application of the methods requires a big set of labeled data. Active learning, which has the potential to address the data labeling challenge, has already had success in geospatial applications such as trajectory classification from movement data and (geo) text and image classification. This review is intended to be particularly relevant for extension of these methods to GISience, to support work in domains such as geographic information retrieval from text and image repositories, interpretation of spatial language, and related geo-semantics challenges. Specifically, to provide a structure for leveraging recent advances, we group the relevant work into five categories: active learning, visual analytics, active learning with visual analytics, active deep learning, plus GIScience and Remote Sensing (RS) using active learning and active deep learning. Each category is exemplified by recent influential work. Based on this framing and our systematic review of key research, we then discuss some of the main challenges of integrating active learning with visual analytics and deep learning, and point out research opportunities from technical and application perspectives-for application-based opportunities, with emphasis on those that address big data with geospatial components

    Google Earth Engine cloud computing platform for remote sensing big data applications: a comprehensive review

    Get PDF
    Remote sensing (RS) systems have been collecting massive volumes of datasets for decades, managing and analyzing of which are not practical using common software packages and desktop computing resources. In this regard, Google has developed a cloud computing platform, called Google Earth Engine (GEE), to effectively address the challenges of big data analysis. In particular, this platformfacilitates processing big geo data over large areas and monitoring the environment for long periods of time. Although this platformwas launched in 2010 and has proved its high potential for different applications, it has not been fully investigated and utilized for RS applications until recent years. Therefore, this study aims to comprehensively explore different aspects of the GEE platform, including its datasets, functions, advantages/limitations, and various applications. For this purpose, 450 journal articles published in 150 journals between January 2010 andMay 2020 were studied. It was observed that Landsat and Sentinel datasets were extensively utilized by GEE users. Moreover, supervised machine learning algorithms, such as Random Forest, were more widely applied to image classification tasks. GEE has also been employed in a broad range of applications, such as Land Cover/land Use classification, hydrology, urban planning, natural disaster, climate analyses, and image processing. It was generally observed that the number of GEE publications have significantly increased during the past few years, and it is expected that GEE will be utilized by more users from different fields to resolve their big data processing challenges.Peer ReviewedPostprint (published version

    Learning to Map the Visual and Auditory World

    Get PDF
    The appearance of the world varies dramatically not only from place to place but also from hour to hour and month to month. Billions of images that capture this complex relationship are uploaded to social-media websites every day and often are associated with precise time and location metadata. This rich source of data can be beneficial to improve our understanding of the globe. In this work, we propose a general framework that uses these publicly available images for constructing dense maps of different ground-level attributes from overhead imagery. In particular, we use well-defined probabilistic models and a weakly-supervised, multi-task training strategy to provide an estimate of the expected visual and auditory ground-level attributes consisting of the type of scenes, objects, and sounds a person can experience at a location. Through a large-scale evaluation on real data, we show that our learned models can be used for applications including mapping, image localization, image retrieval, and metadata verification
    • …
    corecore