63 research outputs found

    Spectrum Sensing and Multiple Access Schemes for Cognitive Radio Networks

    Get PDF
    Increasing demands on the radio spectrum have driven wireless engineers to rethink approaches by which devices should access this natural, and arguably scarce, re- source. Cognitive Radio (CR) has arisen as a new wireless communication paradigm aimed at solving the spectrum underutilization problem. In this thesis, we explore a novel variety of techniques aimed at spectrum sensing which serves as a fundamental mechanism to find unused portions of the electromagnetic spectrum. We present several spectrum sensing methods based on multiple antennas and evaluate their receiving operating characteristics. We study a cyclostationary feature detection technique by means of multiple cyclic frequencies. We make use of a spec- trum sensing method called sequential analysis that allows us to significantly decrease the time needed for detecting the presence of a licensed user. We extend this scheme allowing each CR user to perform the sequential analysis algorithm and send their local decision to a fusion centre. This enables for an average faster and more accurate detection. We present an original technique for accounting for spatial and temporal cor- relation influence in spectrum sensing. This reflects on the impact of the scattering environment on detection methods using multiple antennas. The approach is based on the scattering geometry and resulting correlation properties of the received signal at each CR device. Finally, the problem of spectrum sharing for CR networks is addressed in or- der to take advantage of the detected unused frequency bands. We proposed a new multiple access scheme based on the Game Theory. We examine the scenario where a random number of CR users (considered as players) compete to access the radio spec- trum. We calculate the optimal probability of transmission which maximizes the CR throughput along with the minimum harm caused to the licensed users’ performance

    Comparative Analysis of Blind Detectors in a Cluster-Based Cooperative Spectrum Hole Detection

    Get PDF
    Prevention of authorized users from interference determine the accurate detection of Spectrum Hole (SH) is of great importance in a Spectrum Shearing Network (SSN). However, multipath fading and shadowing affect the accurate detection of SH resulting in interference. Cluster-Based Cooperative Spectrum Hole Detection (CBCSHD) used to address this problem depends on detector and number of clusters. Hence, comparative analysis of blind detectors in CBCSHD is carried out to evaluate its performance with various blind detectors and number of clusters. The CBCSHD is carried out using six Cognitive Users (CUs) that jointly carry out detection of SH and each of the CUs performs local sensing using Eigenvalue Detector (EVD), Energy Detector (ED) and Cyclostationary Detector (CD). The CUs form clusters to reduce reporting overhead between CUs. The local sensing results from individual user are combined at the Cluster Head (CH) using majority fusion rule. The performance of each of the detectors in CBCSHD is evaluated using Probability of Detection (PD) and Sensing Time (ST). PD values of 0.7661, 0.7160 and 0.6229 are obtained at SNR of 4 dB for ED, CD and EVD, respectively, while ST values of 3.0707, 3.7163 and 4.0907 s are obtained for ED, CD and EVD, respectively. The results obtained show that ED has the highest detection rate, followed by CD, while EVD shows the worst detection rate

    An Optimal Eigenvalue Based Spectrum Sensing Algorithm for Cognitive Radio

    Get PDF
    Spectrum is a scarce resource, and licensed spectrum is intended to be used only by the spectrum owners. Various measurements of spectrum utilization have shown unused resources in frequency, time and space. Cognitive radio is a new concept of reusing licensed spectrum in an unlicensed manner. The unused resources are often referred to as spectrum holes or white spaces. These spectrum holes could be reused by cognitive radios, sometimes called secondary users. All man-made signals have some structure that can be potentially exploited to improve their detection performance. This structure is intentionally introduced for example by the channel coding, the modulation and by the use of space-time codes. This structure, or correlation, is inherent in the sample covariance matrix of the received signal. In particular the eigenvalues of the sample covariance matrix have some spread, or in some cases some known features that can be exploited for detection. This work aims to implement, evaluate, and eventually improve on algorithms for efficient computation of eigenvalue-based spectrum sensing methods. The computations will be based on power methods for computation of the dominant eigenvalue of the covariance matrix of signals received at the secondary users. The proposed method endeavors to overcome the noise uncertainty problem, and perform better than the ideal energy detection method. The method should be used for various signal detection applications without requiring the knowledge of the signal, channel and noise power

    Wideband Spectrum Sensing for Dynamic Spectrum Sharing

    Get PDF
    The proliferation of wireless devices grows exponentially, demanding more and more data communication capacity over wireless links. Radio spectrum is a scarce resource, and traditional wireless networks deployed by Mobile Network Operators (MNO) are based on an exclusive spectrum band allocation. However, underutilization of some licensed bands in time and geographic domains has been reported, especially in rural areas or areas away from high population density zones. This coexistence of increasingly high data communication needs and spectrum underutilization is an incomprehensible scenario. A more rational and efficient use of the spectrum is the possibility of Licensed Users (known as Primary Users – PU) to lease the spectrum, when not in use, to Unlicensed Users (known as Secondary Users – SU), or allowing the SU to opportunistically use the spectrum after sensing and verifying that the PU is idle. In this latter case, the SU must stop transmitting when the PU becomes active. This thesis addresses the spectrum sensing task, which is essential to provide dynamic spectrum sharing between PUs and SUs. We show that the Spectral Correlation Function (SCF) and the Spectral Coherence Function (SCoF) can provide a robust signal detection algorithm by exploiting the cyclostationary characteristics of the data communication signal. We enhance the most used algorithm to compute de SCF - the FAM (FFT Accumulation Method) algorithm – to efficiently compute the SCF in a local/zoomed region of the support ( ; ) plane (frequency/cycle frequency plane). This will provide the quick identification of spectral bands in use by PUs or free, in a wideband sampling scenario. Further, the characterization of the probability density of the estimates of the SCF and SCoF when only noise is present, using the FAM algorithm, will allow the definition of an adaptive threshold to develop a blind (with respect to the noise statistics) Constant False Alarm Rate (CFAR) detector (using the SCoF) and also a CFAR and a Constant Detection Rate (CDR) detector when that characterization is used to obtain an estimate of the background noise variance (using the SCF).A proliferação de dispositivos sem fios cresce de forma exponencial, exigindo cada vez mais capacidade de comunicação de dados através de ligações sem fios. O espectro radioelétrico é um recurso escasso, e as redes sem fios tradicionais implantadas pelos Operadores de Redes Móveis baseiam-se numa atribuição exclusiva de bandas do espectro. No entanto, tem sido relatada a subutilização de algumas bandas licenciadas quer ao longo do tempo, quer na sua localização geográfica, especialmente em áreas rurais, e em áreas longe de zonas de elevada densidade populacional. A coexistência da necessidade cada vez maior de comunicação de dados, e a subutilização do espectro é um cenário incompreensível. Uma utilização mais racional e eficiente do espectro pressupõe a possibilidade dos Utilizadores Licenciados (conhecidos como Utilizadores Primários – Primary Users - PU) alugarem o espectro, quando este não está a ser utilizado, a Utilizadores Não Licenciados (conhecidos como Utilizadores Secundários – Secondary Users - SU), ou permitir ao SU utilizar oportunisticamente o espectro após a deteção e verificação de que o PU está inativo. Neste último caso, o SU deverá parar de transmitir quando o PU ficar ativo. Nesta tese é abordada a tarefa de deteção espectral, que é essencial para proporcionar a partilha dinâmica do espectro entre PUs e SUs. Mostra-se que a Função de Correlação Espectral (Spectral Correlation Function - SCF) e a Função de Coerência Espectral (Spectral Coherence Function - SCoF) permitem o desenvolvimento de um algoritmo robusto de deteção de sinal, explorando as características ciclo-estacionárias dos sinais de comunicação de dados. Propõe-se uma melhoria ao algoritmo mais utilizado para cálculo da SCF – o método FAM (FFT Accumulation Method) - para permitir o cálculo mais eficiente da SCF numa região local/ampliada do plano de suporte / (plano de frequência/frequência de ciclo). Esta melhoria permite a identificação rápida de bandas espectrais em uso por PUs ou livres, num cenário de amostragem de banda larga. Adicionalmente, é feita a caracterização da densidade de probabilidade das estimativas da SCF e SCoF quando apenas o ruído está presente, o que permite a definição de um limiar adaptativo, para desenvolver um detetor de Taxa de Falso Alarme Constante (Constant False Alarm Rate – CFAR) sem conhecimento do ruído de fundo (usando a SCoF) e também um detetor CFAR e Taxa de Deteção Constante (Constant Detection Rate – CDR), quando se utiliza aquela caracterização para obter uma estimativa da variância do ruído de fundo (usando a SCF)

    Spectrum and energy efficient multi-antenna spectrum sensing for green UAV communication

    Get PDF
    Unmanned Aerial Vehicle (UAV) communication is a promising technology that provides swift and flexible on-demand wireless connectivity for devices without infrastructure support. With recent developments in UAVs, spectrum and energy efficient green UAV communication has become crucial. To deal with this issue, Spectrum Sharing Policy (SSP) is introduced to support green UAV communication. Spectrum sensing in SSP must be carefully formulated to control interference to the primary users and ground communications. In this paper, we propose spectrum sensing for opportunistic spectrum access in green UAV communication to improve the spectrum utilization efficiency. Different from most existing works, we focus on the problem of spectrum sensing of randomly arriving primary signals in the presence of non-Gaussian noise/interference. We propose a novel and improved p-norm-based spectrum sensing scheme to improve the spectrum utilization efficiency in green UAV communication. Firstly, we construct the p-norm decision statistic based on the assumption that the random arrivals of signals follow a Poisson process. Then, we analyze and derive the approximate analytical expressions of the false-alarm and detection probabilities by utilizing the central limit theorem. Simulation results illustrate the validity and superiority of the proposed scheme when the primary signals are corrupted by additive non-Gaussian noise and arrive randomly during spectrum sensing in the green UAV communication

    Performance Analysis of Improved Technique for Optimal Frequency Spectrum Utilization Considering Energy and Eigenvalue Detectors

    Get PDF
    Recently, exponential rise in the demand of wireless communication has led to gross reduction in the availability of wireless frequency spectrum to meet the proliferation of demands. Overlay and underlay cognitive radio used to address this problem is characterized with poor management of the assigned spectrum. The basic and essential mechanism of cognitive Radio (CR) to find unused spectrum is called Spectrum Sensing. This is important in optimizing frequency allocation for the increasing wireless communication system. Hence, this paper developed an energy efficient spectrum sensing technique for detection of white and brown space using energy and eigenvalue detector. Based on a predefined switching algorithm, the developed spectrum sensing system switches between overlay and underlay approach when there is presence of white space and brown space respectively. During the underlay approach, the cognitive user (CU) signal is coded using a Code Division Multiple Access (CDMA) to prevent primary users (PU) receiver from hearing CU signal and thereby improve the security of CU. Also, Hybrid Decode Amplify and Forward (H-DAF) cooperative relay technique is incorporated to enhance the coverage area of the cognitive user. However, during the overlay approach, H-DAF cooperative relay technique will be in sleep mode since CU can transmit with the maximum transmitting power. During the underlay approach, the received signal at the relay node is decoded, amplified, and coded using CDMA before forwarding to the CU receiver. The paper compared the performance of the two detectors by simulating the developed algorithm using MATLAB R2021a. Evaluation was based on Throughput, Spectrum Utilization Efficiency, and Spectral Efficiency by comparing Energy detector and Eigen Value detector. Keywords: Energy Detector (ED), Eigenvalue Detector (EVD), White Space, Brown Space, Spectrum Sensing (SS), Code Division Multiple Access (CDMA). DOI: 10.7176/ISDE/13-2-04 Publication date:July 31st 202
    • …
    corecore