213 research outputs found

    Sensing and awareness of 360º immersive videos on the move

    Get PDF
    Tese de mestrado em Engenharia Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2013Ao apelar a vários sentidos e transmitir um conjunto muito rico de informação, o vídeo tem o potencial para causar um forte impacto emocional nos espectadores, assim como para a criação de uma forte sensação de presença e ligação com o vídeo. Estas potencialidades podem ser estendidas através de percepção multimídia, e da flexibilidade da mobilidade. Com a popularidade dos dispositivos móveis e a crescente variedade de sensores e actuadores que estes incluem, existe cada vez mais potencial para a captura e visualização de vídeo em 360º enriquecido com informação extra (metadados), criando assim as condições para proporcionar experiências de visualização de vídeo mais imersivas ao utilizador. Este trabalho explora o potencial imersivo do vídeo em 360º. O problema é abordado num contexto de ambientes móveis, assim como num contexto da interação com ecrãs de maiores dimensões, tirando partido de second screens para interagir com o vídeo. De realçar que, em ambos os casos, o vídeo a ser reproduzido é aumentado com vários tipos de informação. Foram assim concebidas várias funcionalidades para a captura, pesquisa, visualização e navegação de vídeo em 360º. Os resultados confirmaram a existência de vantagens no uso de abordagens multisensoriais como forma de melhorar as características imersivas de um ambiente de vídeo. Foram também identificadas determinadas propriedades e parâmetros que obtêm melhores resultados em determinadas situações. O vídeo permite capturar e apresentar eventos e cenários com grande autenticidade, realismo e impacto emocional. Para além disso, tem-se vindo a tornar cada vez mais pervasivo no quotidiano, sendo os dispositivos pessoais de captura e reprodução, a Internet, as redes sociais, ou a iTV exemplos de meios através dos quais o vídeo chega até aos utilizadores (Neng & Chambel, 2010; Noronha et al, 2012). Desta forma, a imersão em vídeo tem o potencial para causar um forte impacto emocional nos espectadores, assim como para a criação de uma forte sensação de presença e ligação com o vídeo (Douglas & Hargadon, 2000; Visch et al, 2010). Contudo, no vídeo tradicional a experiência dos espectadores é limitada ao ângulo para o qual a câmara apontava durante a captura do vídeo. A introdução de vídeo em 360º veio ultrapassar essa restrição. Na busca de melhorar ainda mais as capacidades imersivas do vídeo podem ser considerados tópicos como a percepção multimídia e a mobilidade. Os dispositivos móveis têm vindo a tornar-se cada vez mais omnipresentes na sociedade moderna, e, dada a grande variedade de sensores e actuadores que incluem, oferecem um largo espectro de oportunidades de captura e reprodução de vídeo em 360º enriquecido com informação extra (metadados), tendo portanto o potencial para melhorar o paradigma de interação e providenciar suporte a experiências de visualização de vídeo mais ponderosas e imersivas. Contudo, existem desafios relacionados com o design de ambientes eficazes que tirem partido deste potencial de imersão. Ecrãs panorâmicos e CAVEs são exemplos de ambientes que caminham na direção da imersão total e providenciam condições privilegiadas no que toca à reprodução de vídeo imersivo. Porém, não são muito convenientes e, especialmente no caso das CAVEs, não são facilmente acessíveis. Por outro lado, a flexibilidade associada aos dispositivos móveis poderia permitir que os utilizadores tirassem partido dos mesmos usando-os, por exemplo, como uma janela (móvel) para o vídeo no qual estariam imersos. Mais do que isso, seguindo esta abordagem os utilizadores poderiam levar estas experiências de visualização consigo para qualquer lugar. Como second screens, os dispositivos móveis podem ser usados como auxiliares de navegação relativamente aos conteúdos apresentados no ecrã principal (seja este um ecrã panorâmico ou uma CAVE), representando também uma oportunidade para fazer chegar informação adicional ao utilizador, eliminando do ecrã principal informação alheia ao conteúdo base, o que proporciona uma melhor sensação de imersão e flexibilidade. Este trabalho explora o potencial imersivo do vídeo em 360º em ambientes móveis aumentado com vários tipos de informação. Nesse sentido, e estendendo um trabalho anterior (Neng, 2010; Noronha, 2012; Álvares, 2012) que incidiu maioritariamente na dimensão participativa de imersão, a presente abordagem centrou-se na dimensão perceptual de imersão. Neste âmbito, foram concebidas, desenvolvidas e testadas várias funcionalidades, agrupadas numa aplicação de visualização de vídeo em 360º – Windy Sight Surfers. Considerando a crescente popularidade dos dispositivos móveis na sociedade e as características que os tornam numa oportunidade para melhorar a interação homem-máquina e, mais especificamente, suportar experiências de visualização de vídeo mais imersivas, a aplicação Windy Sight Surfers está fortemente relacionada com ambientes móveis. Considerando as possibilidades de interação que o uso de second screens introduz, foi concebida uma componente do Windy Sight Surfers relacionada com a interação com ecrãs de maiores dimensões. Os vídeos utilizados no Windy Sight Surfers são vídeos em 360º, aumentados com uma série de informações registadas a partir do Windy Sight Surfers durante a sua captura. Isto é, enquanto a câmara captura os vídeos, a aplicação regista informação adicional – metadados – obtida a partir de vários sensores do dispositivo, que complementa e enriquece os vídeos. Nomeadamente, são capturadas as coordenadas geográficas e a velocidade de deslocamento a partir do GPS, a orientação do utilizador a partir da bússola digital, os valores relativos às forças-G associadas ao dispositivo através do acelerómetro, e são recolhidas as condições atmosféricas relativas ao estado do tempo através de um serviço web. Quando capturados, os vídeos, assim como os seus metadados, podem ser submetidos para o sistema. Uma vez capturados e submetidos, os vídeos podem ser pesquisados através do mais tradicional conjunto de palavras chave, de filtros relacionados com a natureza da aplicação (ex. velocidade, período do dia, condições atmosféricas), ou através de um mapa, o que introduz uma componente geográfica ao processo de pesquisa. Os resultados podem ser apresentados numa convencional lista, no formato de uma cover-flow, ou através do mapa. No que respeita à visualização dos vídeos, estes são mapeados em torno de um cilindro, que permite representar a vista dos 360º e transmitir a sensação de estar parcialmente rodeado pelo vídeo. Uma vez que a visualização de vídeos decorre em dispositivos móveis, os utilizadores podem deslocar continuamente o ângulo de visão do vídeo 360º para a esquerda ou direita ao mover o dispositivo em seu redor, como se o dispositivo se tratasse de uma janela para o vídeo em 360º. Adicionalmente, os utilizadores podem alterar o ângulo de visualização arrastando o dedo pelo vídeo, uma vez que todo o ecrã consiste numa interface deslizante durante a visualização de vídeos em 360º. Foram ainda incorporadas na aplicação várias funcionalidades que pretendem dar um maior realismo à visualização de vídeos. Nomeadamente, foi desenvolvido um acessório de vento na plataforma Arduino que leva em conta os metadados de cada vídeo para produzir vento e assim dar uma sensação mais realista do vento e da velocidade do deslocamento durante a visualização dos vídeos. De referir que o algoritmo implementado leva em conta não só a velocidade de deslocamento, como também o estado do tempo em termos de vento (força e orientação) aquando da captura do vídeo, e a orientação do utilizador de acordo com o ângulo do vídeo a ser visualizado durante a reprodução do vídeo. Considerando a componente áudio dos vídeos, neste sistema, o áudio de cada vídeo é mapeado num espaço sonoro tridimensional, que pode ser reproduzido num par de auscultadores estéreo. Neste espaço sonoro, a posição das fontes sonoras está associada ao ângulo frontal do vídeo e, como tal, muda de acordo com o ângulo do vídeo a ser visualizado. Isto é, se o utilizador estiver a visualizar o ângulo frontal do vídeo, as fontes sonoras estarão localizadas diante da cabeça do utilizador; se o utilizador estiver a visualizar o ângulo traseiro do vídeo, as fontes sonoras estarão localizadas por de trás da cabeça do utilizador. Uma vez que os vídeos têm 360º, a posição das fontes sonoras varia em torno de uma circunferência à volta da cabeça do utilizador, sendo o intuito o de dar uma orientação adicional no vídeo que está a ser visualizado. Para aumentar a sensação de movimento através do áudio, foi explorado o Efeito de Doppler. Este efeito pode ser descrito como a alteração na frequência observada de uma onda, ocorrendo quando a fonte ou o observador se encontram em movimento entre si. Devido ao facto deste efeito ser associado à noção de movimento, foi conduzida uma experiência com o intuito de analisar se o uso controlado do Efeito de Doppler tem o potencial de aumentar a sensação de movimento durante a visualização dos vídeos. Para isso, foi adicionada uma segunda camada sonora cuja função é reproduzir o Efeito de Doppler ciclicamente e de forma controlada. Esta reprodução foi relacionada com a velocidade de deslocamento do vídeo de acordo seguinte proporção: quanto maior a velocidade, maior será a frequência com que este efeito é reproduzido. Estas funcionalidades são relativas à procura de melhorar as capacidades imersivas do sistema através da estimulação sensorial dos utilizadores. Adicionalmente, o Windy Sight Surfers inclui um conjunto de funcionalidades cujo objectivo se centra em melhorar as capacidades imersivas do sistema ao providenciar ao utilizador informações que consciencializem o utilizador do contexto do vídeo, permitindo assim que este se aperceba melhor do que se está a passar no vídeo. Mais especificamente, estas funcionalidades estão dispostas numa camada por cima do vídeo e disponibilizam informações como a velocidade atual, a orientação do ângulo do vídeo a ser observado, ou a força-G instantânea. A acrescentar que as diferentes funcionalidades se dividem numa categoria relativa a informação que é disponibilizada permanentemente durante a reprodução de vídeos, e numa segunda categoria (complementar da primeira) relativa a informação que é disponibilizada momentaneamente, sendo portanto relativa a determinadas porções do vídeo. Procurando conceber uma experiência mais envolvente para o utilizador, foi incorporado um reconhecedor emocional baseado em reconhecimento de expressões faciais no Windy Sight Surfers. Desta forma, as expressões faciais dos utilizadores são analisadas durante a reprodução de vídeos, sendo os resultados desta análise usados em diferentes funcionalidades da aplicação. Presentemente, a informação emocional tem três aplicações no ambiente desenvolvido, sendo usada em: funcionalidades de catalogação e pesquisa de vídeos; funcionalidades que influenciam o controlo de fluxo da aplicação; e na avaliação do próprio sistema. Considerando o contexto do projeto de investigação ImTV (url-ImTV), e com o intuito de tornar a aplicação o mais flexível possível, o Windy Sight Surfers tem uma componente second screen, permitindo a interação com ecrãs mais amplos, como por exemplo televisões. Desta forma, é possível utilizar os dois dipositivos em conjunto por forma a retirar o melhor proveito de cada um com o objectivo de aumentar as capacidades imersivas do sistema. Neste contexto, os vídeos passam a ser reproduzidos no ecrã conectado, ao passo que a aplicação móvel assume as funcionalidades de controlar o conteúdo apresentado no ecrã conectado e disponibilizar um conjunto de informações adicionais, tais como um minimapa, onde apresenta uma projeção planar dos 360º do vídeo, e um mapa da zona geográfica associada ao vídeo onde se representa o percurso em visualização em tempo real e percursos adicionais que sejam respeitantes a vídeos associados à mesma zona geográfica do vídeo a ser visualizado no momento. Foi efectuada uma avaliação de usabilidade com utilizadores, tendo como base o questionário USE e o Self-Assessment Manikin (SAM) acoplado de dois parâmetros adicionais relativos a presença e realismo. Com base na observação durante a realização de tarefas por parte dos utilizadores, foram realizadas entrevistas onde se procurou obter comentários, sugestões ou preocupações sobre as funcionalidades testadas. Adicionalmente, a ferramenta de avaliação emocional desenvolvida foi utilizada de forma a registar quais as emoções mais prevalentes durante a utilização da aplicação. Por fim, as potencialidades imersivas globais do Windy Sight Surfers foram avaliadas através da aplicação do Immersive Tendencies Questionnaire (ITQ) e de uma versão adaptada do Presence Questionnaire (PQ). Os resultados confirmaram a existência de vantagens no uso de abordagens multisensoriais como forma de melhorar as características imersivas de um ambiente de vídeo. Para além disso, foram identificadas determinadas propriedades e parâmetros que obtêm melhores resultados e são mais satisfatórios em determinadas condições, podendo assim estes resultados servir como diretrizes para futuros ambientes relacionados com vídeo imersivo.By appealing to several senses and conveying very rich information, video has the potential for a strong emotional impact on viewers, greatly influencing their sense of presence and engagement. This potential may be extended even further with multimedia sensing and the flexibility of mobility. Mobile devices are commonly used and increasingly incorporating a wide range of sensors and actuators with the potential to capture and display 360º video and metadata, thus supporting more powerful and immersive video user experiences. This work was carried out in the context of the ImTV research project (url-ImTV), and explores the immersion potential of 360º video. The matter is approached in a mobile environment context, and in a context of interaction with wider screens, using second screens in order to interact with video. It must be emphasized that, in both situations, the videos are augmented with several types of information. Therefore, several functionalities were designed regarding the capture, search, visualization and navigation of 360º video. Results confirmed advantages in using a multisensory approach as a means to increase immersion in a video environment. Furthermore, specific properties and parameters that worked better in different conditions have been identified, thus enabling these results to serve as guidelines for future environments related to immersive video

    ImTV: Towards an Immersive TV experience

    Get PDF
    3rd International Workshop on Future Television: Making Television Integrated and Interactive, Adjunct Proceeding of EuroiTVThe media marketplace has witnessed an increase in the amount and types of viewing devices available to consumers. Moreover, a lot of these are portable, and offer tremendous personalization opportunities. Technology, distribution, reception and content developments all influence new 'television' viewing/using habits. In this paper, we report results and findings of a transnational three year research project on the Future of TV. Our main contributions are organized into three main dimensions: (1) a user survey concerning behaviors associated with media engagement; (2) technologies driving the social and personalized TV of the 21st century, e.g. crowdsourcing and recommendation systems; and (3) technologies enabling interactions and visualizations that are more natural, e.g. gestures and 360º video.info:eu-repo/semantics/publishedVersio

    Toward hyper-realistic and interactive social VR experiences in live TV scenarios

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Social Virtual Reality (VR) allows multiple distributed users getting together in shared virtual environments to socially interact and/or collaborate. This article explores the applicability and potential of Social VR in the broadcast sector, focusing on a live TV show use case. For such a purpose, a novel and lightweight Social VR platform is introduced. The platform provides three key outstanding features compared to state-of-the-art solutions. First, it allows a real-time integration of remote users in shared virtual environments, using realistic volumetric representations and affordable capturing systems, thus not relying on the use of synthetic avatars. Second, it supports a seamless and rich integration of heterogeneous media formats, including 3D scenarios, dynamic volumetric representation of users and (live/stored) stereoscopic 2D and 180º/360º videos. Third, it enables low-latency interaction between the volumetric users and a video-based presenter (Chroma keying), and a dynamic control of the media playout to adapt to the session’s evolution. The production process of an immersive TV show to be able to evaluate the experience is also described. On the one hand, the results from objective tests show the satisfactory performance of the platform. On the other hand, the promising results from user tests support the potential impact of the presented platform, opening up new opportunities in the broadcast sector, among others.This work has been partially funded by the European Union’s Horizon 2020 program, under agreement nº 762111 (VRTogether project), and partially by ACCIÓ, under agreement COMRDI18-1-0008 (ViVIM project). Work by Mario Montagud has been additionally funded by the Spanish Ministry of Science, Innovation and Universities with a Juan de la Cierva – Incorporación grant (reference IJCI-2017-34611). The authors would also like to thank the EU H2020 VRTogether project consortium for their relevant and valuable contributions.Peer ReviewedPostprint (author's final draft

    Leveraging eXtented Reality & Human-Computer Interaction for User Experi- ence in 360◦ Video

    Get PDF
    EXtended Reality systems have resurged as a medium for work and entertainment. While 360o video has been characterized as less immersive than computer-generated VR, its realism, ease of use and affordability mean it is in widespread commercial use. Based on the prevalence and potential of the 360o video format, this research is focused on improving and augmenting the user experience of watching 360o video. By leveraging knowledge from Extented Reality (XR) systems and Human-Computer Interaction (HCI), this research addresses two issues affecting user experience in 360o video: Attention Guidance and Visually Induced Motion Sickness (VIMS). This research work relies on the construction of multiple artifacts to answer the de- fined research questions: (1) IVRUX, a tool for analysis of immersive VR narrative expe- riences; (2) Cue Control, a tool for creation of spatial audio soundtracks for 360o video, as well as enabling the collection and analysis of captured metrics emerging from the user experience; and (3) VIMS mitigation pipeline, a linear sequence of modules (including optical flow and visual SLAM among others) that control parameters for visual modi- fications such as a restricted Field of View (FoV). These artifacts are accompanied by evaluation studies targeting the defined research questions. Through Cue Control, this research shows that non-diegetic music can be spatialized to act as orientation for users. A partial spatialization of music was deemed ineffective when used for orientation. Addi- tionally, our results also demonstrate that diegetic sounds are used for notification rather than orientation. Through VIMS mitigation pipeline, this research shows that dynamic restricted FoV is statistically significant in mitigating VIMS, while mantaining desired levels of Presence. Both Cue Control and the VIMS mitigation pipeline emerged from a Research through Design (RtD) approach, where the IVRUX artifact is the product of de- sign knowledge and gave direction to research. The research presented in this thesis is of interest to practitioners and researchers working on 360o video and helps delineate future directions in making 360o video a rich design space for interaction and narrative.Sistemas de Realidade EXtendida ressurgiram como um meio de comunicação para o tra- balho e entretenimento. Enquanto que o vídeo 360o tem sido caracterizado como sendo menos imersivo que a Realidade Virtual gerada por computador, o seu realismo, facili- dade de uso e acessibilidade significa que tem uso comercial generalizado. Baseado na prevalência e potencial do formato de vídeo 360o, esta pesquisa está focada em melhorar e aumentar a experiência de utilizador ao ver vídeos 360o. Impulsionado por conhecimento de sistemas de Realidade eXtendida (XR) e Interacção Humano-Computador (HCI), esta pesquisa aborda dois problemas que afetam a experiência de utilizador em vídeo 360o: Orientação de Atenção e Enjoo de Movimento Induzido Visualmente (VIMS). Este trabalho de pesquisa é apoiado na construção de múltiplos artefactos para res- ponder as perguntas de pesquisa definidas: (1) IVRUX, uma ferramenta para análise de experiências narrativas imersivas em VR; (2) Cue Control, uma ferramenta para a criação de bandas sonoras de áudio espacial, enquanto permite a recolha e análise de métricas capturadas emergentes da experiencia de utilizador; e (3) canal para a mitigação de VIMS, uma sequência linear de módulos (incluindo fluxo ótico e SLAM visual entre outros) que controla parâmetros para modificações visuais como o campo de visão restringido. Estes artefactos estão acompanhados por estudos de avaliação direcionados para às perguntas de pesquisa definidas. Através do Cue Control, esta pesquisa mostra que música não- diegética pode ser espacializada para servir como orientação para os utilizadores. Uma espacialização parcial da música foi considerada ineficaz quando usada para a orientação. Adicionalmente, os nossos resultados demonstram que sons diegéticos são usados para notificação em vez de orientação. Através do canal para a mitigação de VIMS, esta pesquisa mostra que o campo de visão restrito e dinâmico é estatisticamente significante ao mitigar VIMS, enquanto mantem níveis desejados de Presença. Ambos Cue Control e o canal para a mitigação de VIMS emergiram de uma abordagem de Pesquisa através do Design (RtD), onde o artefacto IVRUX é o produto de conhecimento de design e deu direcção à pesquisa. A pesquisa apresentada nesta tese é de interesse para profissionais e investigadores tra- balhando em vídeo 360o e ajuda a delinear futuras direções em tornar o vídeo 360o um espaço de design rico para a interação e narrativa

    Immersed in Pop! Excursions into Compositional Design

    Get PDF
    Recent changes in consumer audio and music technology and distribution - for example the addition of 3D audio formats such as Dolby Atmos to music streaming services, the recent release of “Spatial Audio” on Apple and Beats products, the proliferation of musical content in virtual reality and 360º videos, etc. - have reignited a public discourse on concepts of immersion and interactivity in popular music and media. This raises questions and necessitates a deepening of popular musicological discourse in these areas. This thesis thus asks: what is the relationship between so-called immersive media and immersive experience? How are immersive and interactive experiences of audiovisual popular music compositionally designed? And to what degree do interpretations of immersion and interactivity in popular music imply agency on part of the listener/viewer? To address these questions, Bresler has authored or co-authored four articles and book chapters on music in immersive and interactive media with a focus on compositional design and immersion in pop music. In the framing chapter, these articles are contextualized through the coining of the term immersive staging, which is a framework for understanding how the perceived relationship between the performer and listener is mediated through technology, performativity, audiovisual compositional design, and aesthetics. Additionally, the chapter makes a case for the hermeneutic methodologies employed throughout.publishedVersio

    Modelling human emotions using immersive virtual reality, physiological signals and behavioural responses

    Full text link
    Tesis por compendio[ES] El uso de la realidad virtual (RV) se ha incrementado notablemente en la comunidad científica para la investigación del comportamiento humano. En particular, la RV inmersiva ha crecido debido a la democratización de las gafas de realidad virtual o head mounted displays (HMD), que ofrecen un alto rendimiento con una inversión económica. Uno de los campos que ha emergido con fuerza en la última década es el Affective Computing, que combina psicofisiología, informática, ingeniería biomédica e inteligencia artificial, desarrollando sistemas que puedan reconocer emociones automáticamente. Su progreso es especialmente importante en el campo de la investigación del comportamiento humano, debido al papel fundamental que las emociones juegan en muchos procesos psicológicos como la percepción, la toma de decisiones, la creatividad, la memoria y la interacción social. Muchos estudios se han centrado en intentar obtener una metodología fiable para evocar y automáticamente identificar estados emocionales, usando medidas fisiológicas objetivas y métodos de aprendizaje automático. Sin embargo, la mayoría de los estudios previos utilizan imágenes, audios o vídeos para generar los estados emocionales y, hasta donde llega nuestro conocimiento, ninguno de ellos ha desarrollado un sistema de reconocimiento emocional usando RV inmersiva. Aunque algunos trabajos anteriores sí analizan las respuestas fisiológicas en RV inmersivas, estos no presentan modelos de aprendizaje automático para procesamiento y clasificación automática de bioseñales. Además, un concepto crucial cuando se usa la RV en investigación del comportamiento humano es la validez: la capacidad de evocar respuestas similares en un entorno virtual a las evocadas por el espacio físico. Aunque algunos estudios previos han usado dimensiones psicológicas y cognitivas para comparar respuestas entre entornos reales y virtuales, las investigaciones que analizan respuestas fisiológicas o comportamentales están mucho menos extendidas. Según nuestros conocimientos, este es el primer trabajo que compara entornos físicos con su réplica en RV, empleando respuestas fisiológicas y algoritmos de aprendizaje automático y analizando la capacidad de la RV de transferir y extrapolar las conclusiones obtenidas al entorno real que se está simulando. El objetivo principal de la tesis es validar el uso de la RV inmersiva como una herramienta de estimulación emocional usando respuestas psicofisiológicas y comportamentales en combinación con algoritmos de aprendizaje automático, así como realizar una comparación directa entre un entorno real y virtual. Para ello, se ha desarrollado un protocolo experimental que incluye entornos emocionales 360º, un museo real y una virtualización 3D altamente realista del mismo museo. La tesis presenta novedosas contribuciones del uso de la RV inmersiva en la investigación del comportamiento humano, en particular en lo relativo al estudio de las emociones. Esta ayudará a aplicar metodologías a estímulos más realistas para evaluar entornos y situaciones de la vida diaria, superando las actuales limitaciones de la estimulación emocional que clásicamente ha incluido imágenes, audios o vídeos. Además, en ella se analiza la validez de la RV realizando una comparación directa usando una simulación altamente realista. Creemos que la RV inmersiva va a revolucionar los métodos de estimulación emocional en entornos de laboratorio. Además, su sinergia junto a las medidas fisiológicas y las técnicas de aprendizaje automático, impactarán transversalmente en muchas áreas de investigación como la arquitectura, la salud, la evaluación psicológica, el entrenamiento, la educación, la conducción o el marketing, abriendo un nuevo horizonte de oportunidades para la comunidad científica. La presente tesis espera contribuir a caminar en esa senda.[EN] In recent years the scientific community has significantly increased its use of virtual reality (VR) technologies in human behaviour research. In particular, the use of immersive VR has grown due to the introduction of affordable, high performance head mounted displays (HMDs). Among the fields that has strongly emerged in the last decade is affective computing, which combines psychophysiology, computer science, biomedical engineering and artificial intelligence in the development of systems that can automatically recognize emotions. The progress of affective computing is especially important in human behaviour research due to the central role that emotions play in many background processes, such as perception, decision-making, creativity, memory and social interaction. Several studies have tried to develop a reliable methodology to evoke and automatically identify emotional states using objective physiological measures and machine learning methods. However, the majority of previous studies used images, audio or video to elicit emotional statements; to the best of our knowledge, no previous research has developed an emotion recognition system using immersive VR. Although some previous studies analysed physiological responses in immersive VR, they did not use machine learning techniques for biosignal processing and classification. Moreover, a crucial concept when using VR for human behaviour research is validity: the capacity to evoke a response from the user in a simulated environment similar to the response that might be evoked in a physical environment. Although some previous studies have used psychological and cognitive dimensions to compare responses in real and virtual environments, few have extended this research to analyse physiological or behavioural responses. Moreover, to our knowledge, this is the first study to compare VR scenarios with their real-world equivalents using physiological measures coupled with machine learning algorithms, and to analyse the ability of VR to transfer and extrapolate insights obtained from VR environments to real environments. The main objective of this thesis is, using psycho-physiological and behavioural responses in combination with machine learning methods, and by performing a direct comparison between a real and virtual environment, to validate immersive VR as an emotion elicitation tool. To do so we develop an experimental protocol involving emotional 360º environments, an art exhibition in a real museum, and a highly-realistic 3D virtualization of the same art exhibition. This thesis provides novel contributions to the use of immersive VR in human behaviour research, particularly in relation to emotions. VR can help in the application of methodologies designed to present more realistic stimuli in the assessment of daily-life environments and situations, thus overcoming the current limitations of affective elicitation, which classically uses images, audio and video. Moreover, it analyses the validity of VR by performing a direct comparison using highly-realistic simulation. We believe that immersive VR will revolutionize laboratory-based emotion elicitation methods. Moreover, its synergy with physiological measurement and machine learning techniques will impact transversely in many other research areas, such as architecture, health, assessment, training, education, driving and marketing, and thus open new opportunities for the scientific community. The present dissertation aims to contribute to this progress.[CA] L'ús de la realitat virtual (RV) s'ha incrementat notablement en la comunitat científica per a la recerca del comportament humà. En particular, la RV immersiva ha crescut a causa de la democratització de les ulleres de realitat virtual o head mounted displays (HMD), que ofereixen un alt rendiment amb una reduïda inversió econòmica. Un dels camps que ha emergit amb força en l'última dècada és el Affective Computing, que combina psicofisiologia, informàtica, enginyeria biomèdica i intel·ligència artificial, desenvolupant sistemes que puguen reconéixer emocions automàticament. El seu progrés és especialment important en el camp de la recerca del comportament humà, a causa del paper fonamental que les emocions juguen en molts processos psicològics com la percepció, la presa de decisions, la creativitat, la memòria i la interacció social. Molts estudis s'han centrat en intentar obtenir una metodologia fiable per a evocar i automàticament identificar estats emocionals, utilitzant mesures fisiològiques objectives i mètodes d'aprenentatge automàtic. No obstant això, la major part dels estudis previs utilitzen imatges, àudios o vídeos per a generar els estats emocionals i, fins on arriba el nostre coneixement, cap d'ells ha desenvolupat un sistema de reconeixement emocional mitjançant l'ús de la RV immersiva. Encara que alguns treballs anteriors sí que analitzen les respostes fisiològiques en RV immersives, aquests no presenten models d'aprenentatge automàtic per a processament i classificació automàtica de biosenyals. A més, un concepte crucial quan s'utilitza la RV en la recerca del comportament humà és la validesa: la capacitat d'evocar respostes similars en un entorn virtual a les evocades per l'espai físic. Encara que alguns estudis previs han utilitzat dimensions psicològiques i cognitives per a comparar respostes entre entorns reals i virtuals, les recerques que analitzen respostes fisiològiques o comportamentals estan molt menys esteses. Segons els nostres coneixements, aquest és el primer treball que compara entorns físics amb la seua rèplica en RV, emprant respostes fisiològiques i algorismes d'aprenentatge automàtic i analitzant la capacitat de la RV de transferir i extrapolar les conclusions obtingudes a l'entorn real que s'està simulant. L'objectiu principal de la tesi és validar l'ús de la RV immersiva com una eina d'estimulació emocional usant respostes psicofisiològiques i comportamentals en combinació amb algorismes d'aprenentatge automàtic, així com realitzar una comparació directa entre un entorn real i virtual. Per a això, s'ha desenvolupat un protocol experimental que inclou entorns emocionals 360º, un museu real i una virtualització 3D altament realista del mateix museu. La tesi presenta noves contribucions de l'ús de la RV immersiva en la recerca del comportament humà, en particular quant a l'estudi de les emocions. Aquesta ajudarà a aplicar metodologies a estímuls més realistes per a avaluar entorns i situacions de la vida diària, superant les actuals limitacions de l'estimulació emocional que clàssicament ha inclòs imatges, àudios o vídeos. A més, en ella s'analitza la validesa de la RV realitzant una comparació directa usant una simulació altament realista. Creiem que la RV immersiva revolucionarà els mètodes d'estimulació emocional en entorns de laboratori. A més, la seua sinergia al costat de les mesures fisiològiques i les tècniques d'aprenentatge automàtic, impactaran transversalment en moltes àrees de recerca com l'arquitectura, la salut, l'avaluació psicològica, l'entrenament, l'educació, la conducció o el màrqueting, obrint un nou horitzó d'oportunitats per a la comunitat científica. La present tesi espera contribuir a caminar en aquesta senda.Marín Morales, J. (2020). Modelling human emotions using immersive virtual reality, physiological signals and behavioural responses [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/148717TESISCompendi

    Learning Through Surgeon's Eyes: Design, Development, and Evaluation of an Immersive Virtual Reality Training Tool for Oral and Maxillofacial Surgery

    Get PDF
    Background: Reduced training hours, over-crowded operating rooms, and lack of focus on non-technical skills are severely affecting surgical training. In specialities such as Oral and Maxillofacial Surgery, there is an increasing need for innovation in training. On the other hand, despite the application of technological advancements including virtual reality (VR) and augmented reality (AR), twenty-eight to forty percent of novice trainees are not confident in performing major surgery. The current research aims to address these challenges by finding a suitable way to develop an evidence-based immersive virtual reality (iVR) experience. Further, the research investigates the impact of this solution on the learning and confidence of trainees. This research introduces VR Surgery, an iVR experience, to address the gaps in the knowledge. VR Surgery is the first multi-sensory, holistic surgical training experience demonstrating Le Fort I osteotomy, a type of maxillofacial surgery, using Oculus Rift and Leap Motion devices. This research demonstrates the design, development and evaluation of VR Surgery and provides a way for future studies on the use of immersive technologies for surgical education. Methods: A design science research approach was followed to identify the problem, build the solution in collaboration with expert surgeons and evaluate it. Using a combination of multimedia, VR Surgery enables trainee surgeons to experience a realistic operating room environment, and interact with the patient’s anatomy while watching the surgery in a close-up stereoscopic 3D view. Consultant oral and maxillofacial surgeons in the UK evaluated VR Surgery for Face and Content validity. Surgeons commented on the content, usability and applicability of VR Surgery to surgical training. Further, to investigate the impact of VR Surgery on the perceived self-confidence of trainees, a single-blinded, parallel, randomised controlled trial (RCT) was performed. Surgical trainees (95) from seven dental schools took part in one of the first experiments to test the role of iVR on self-confidence. Experimental group participants learnt about the Le Fort I procedure using VR Surgery on an Oculus Rift. The control group used similar content in a standard PowerPoint presentation. The primary outcome measures were the self-assessment scores of trainees’ confidence as measured on a Likert scale and objective assessment based on the knowledge. Outcomes: The expert surgeons agreed with the validity of VR Surgery. The participants of the RCT were randomly divided into the experimental (51) and control (44) groups. Trainees had a mean age of 27∙14, and they were 45∙3% female students and 50∙5% male students. A repeated measures multivariate ANOVA was applied to the data to assess the overall impact of receiving the VR surgery intervention over conventional means on the confidence of trainees. Experimental group participants showed higher perceived self-confidence levels compared to those in the control group (p=0∙034, =0∙05). Novices in the first year of their training showed the highest improvement in their confidence, compared to those in the second and third year. Interpretation: Surgical trainees improve their knowledge and self-confidence levels after using an iVR training experience. The study proves that virtual reality applications such as VR Surgery have a substantial potential to bridge the differences in the quality of global surgical training. This research provides a framework for future researchers who use mixed reality for healthcare
    corecore