2,234 research outputs found

    Functional and formal component design for an electric motorbike “Sound Module”

    Get PDF
    Nowadays, new technologies allow creating new advances in the society through the innovation or improvement of existent products. This project intends to design a sound module that will be incorporated in an electric motorbike. As every motorbike has a different inside structure, the study will be carried out considering that the module’s volume may be adapted depending on the motorbike. The electric motorbike market is still in its development stage, and the studied topic in the project seems to be currently in research by many automotive enterprises, as the noise limit rulemakings in the city are a burning issue that has been already accomplished by 4-wheel vehicles. The design and study aims to contribute in the decrease of accidents due to the lack of noise of this type of vehicles. This will be accomplished with a selection of elements that combined, will allow the citizens to discern the presence of the electric vehicle and act in consequence

    Sensing vehicle dynamics for determining driver phone use

    Full text link
    This paper utilizes smartphone sensing of vehicle dynamics to de-termine driver phone use, which can facilitate many traffic safety applications. Our system uses embedded sensors in smartphones, i.e., accelerometers and gyroscopes, to capture differences in cen-tripetal acceleration due to vehicle dynamics. These differences combined with angular speed can determine whether the phone is on the left or right side of the vehicle. Our low infrastructure ap-proach is flexible with different turn sizes and driving speeds. Ex-tensive experiments conducted with two vehicles in two different cities demonstrate that our system is robust to real driving envi-ronments. Despite noisy sensor readings from smartphones, our approach can achieve a classification accuracy of over 90 % with a false positive rate of a few percent. We also find that by combining sensing results in a few turns, we can achieve better accuracy (e.g., 95%) with a lower false positive rate

    Acoustical Ranging Techniques in Embedded Wireless Sensor Networked Devices

    Get PDF
    Location sensing provides endless opportunities for a wide range of applications in GPS-obstructed environments; where, typically, there is a need for higher degree of accuracy. In this article, we focus on robust range estimation, an important prerequisite for fine-grained localization. Motivated by the promise of acoustic in delivering high ranging accuracy, we present the design, implementation and evaluation of acoustic (both ultrasound and audible) ranging systems.We distill the limitations of acoustic ranging; and present efficient signal designs and detection algorithms to overcome the challenges of coverage, range, accuracy/resolution, tolerance to Doppler’s effect, and audible intensity. We evaluate our proposed techniques experimentally on TWEET, a low-power platform purpose-built for acoustic ranging applications. Our experiments demonstrate an operational range of 20 m (outdoor) and an average accuracy 2 cm in the ultrasound domain. Finally, we present the design of an audible-range acoustic tracking service that encompasses the benefits of a near-inaudible acoustic broadband chirp and approximately two times increase in Doppler tolerance to achieve better performance

    A survey on acoustic positioning systems for location-based services

    Get PDF
    Positioning systems have become increasingly popular in the last decade for location-based services, such as navigation, and asset tracking and management. As opposed to outdoor positioning, where the global navigation satellite system became the standard technology, there is no consensus yet for indoor environments despite the availability of different technologies, such as radio frequency, magnetic field, visual light communications, or acoustics. Within these options, acoustics emerged as a promising alternative to obtain high-accuracy low-cost systems. Nevertheless, acoustic signals have to face very demanding propagation conditions, particularly in terms of multipath and Doppler effect. Therefore, even if many acoustic positioning systems have been proposed in the last decades, it remains an active and challenging topic. This article surveys the developed prototypes and commercial systems that have been presented since they first appeared around the 1980s to 2022. We classify these systems into different groups depending on the observable that they use to calculate the user position, such as the time-of-flight, the received signal strength, or the acoustic spectrum. Furthermore, we summarize the main properties of these systems in terms of accuracy, coverage area, and update rate, among others. Finally, we evaluate the limitations of these groups based on the link budget approach, which gives an overview of the system's coverage from parameters such as source and noise level, detection threshold, attenuation, and processing gain.Agencia Estatal de InvestigaciónResearch Council of Norwa

    Wildlife Deterrence Method Test Device

    Get PDF
    The objective of the Deer Busters team is to design and build a device or system of devices that will be used to determine which method, or methods, are most effective at deer deterrence. JumpSport suspects that a method which gives the appearance of approach to the deer in an aggressive or startling manner but also changes the way it attacks so that the deer do not get used to the device will be most effective. Deer Busters is committed to the completion of the deer deterrent testing device by the end of the fall quarter of 2014

    Acoustic Sensing: Mobile Applications and Frameworks

    Full text link
    Acoustic sensing has attracted significant attention from both academia and industry due to its ubiquity. Since smartphones and many IoT devices are already equipped with microphones and speakers, it requires nearly zero additional deployment cost. Acoustic sensing is also versatile. For example, it can detect obstacles for distracted pedestrians (BumpAlert), remember indoor locations through recorded echoes (EchoTag), and also understand the touch force applied to mobile devices (ForcePhone). In this dissertation, we first propose three acoustic sensing applications, BumpAlert, EchoTag, and ForcePhone, and then introduce a cross-platform sensing framework called LibAS. LibAS is designed to facilitate the development of acoustic sensing applications. For example, LibAS can let developers prototype and validate their sensing ideas and apps on commercial devices without the detailed knowledge of platform-dependent programming. LibAS is shown to require less than 30 lines of code in Matlab to implement the prototype of ForcePhone on Android/iOS/Tizen/Linux devices.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143971/1/yctung_1.pd

    Inaudible acoustics: Techniques and applications

    Get PDF
    This dissertation is focused on developing a sub-area of acoustics that we call inaudible acoustics. We have developed two core capabilities, (1) BackDoor and (2) Ripple, and demonstrated their use in various mobile and IoT applications. In BackDoor, we synthesize ultrasound signals that are inaudible to humans yet naturally recordable by all microphones. Importantly, the microphone does not require any modification, enabling billions of microphone-enabled devices, including phones, laptops, voice assistants, and IoT devices, to leverage the capability. Example applications include acoustic data beacons, acoustic watermarking, and spy-microphone jamming. In Ripple, we develop modulation and sensing techniques for vibratory signals that traverse through solid surfaces, enabling a new form of secure proximal communication. Applications of the vibratory communication system include on-body communication through imperceptible physical vibrations and device-device secure data transfer through physical contacts. Our prototypes include an inaudible jammer that secures private conversations from electronic eavesdropping, acoustic beacons for location-based information sharing, and vibratory communication in a smart-ring sending password through a finger touch. Our research also uncovers new security threats to acoustic devices. While simple abuse of inaudible jammer can disable hearing aids and cell phones, our work shows that voice interfaces, such as Amazon Echo, Google Home, Siri, etc., can be compromised through carefully designed inaudible voice commands. The contributions of this dissertation can be summarized in three primitives: (1) exploiting inherent hardware nonlinearity for sensing out-of-band signals, (2) developing the vibratory communication system for secure touch-based data exchange, and (3) structured information reconstruction from noisy acoustic signals. In developing these primitives, we draw from principles in wireless networking, digital communications, signal processing, and embedded design and translate them to completely functional systems

    AMIL: Localizing Neighboring Mobile Devices Through a Simple Gesture

    Get PDF
    Abstract-Smartphone users are often grouped to exchange files or perform collaborative tasks when meeting together. We argue that the location information of group members is critical to many mobile applications. Existing localization solutions mostly rely on anchor nodes or infrastructures to perform ranging and positioning. These approaches are inefficient for ad hoc scenarios. In this paper, we propose AMIL, an Acoustic MobilityInduced TDoA (Time-Difference-of-Arrival)-based Localization scheme for smartphones. In AMIL, a smartphone user can use simple gestures (e.g., hold the phone and draw a triangle in the air) to quickly obtain the relative coordinates of neighboring mobile devices. We have implemented and evaluated AMIL on off-the-shelf smartphones. The field tests have shown that our scheme can achieve less than three degree orientation errors and can successfully build a simple map of 12 people in an office room with average error of 50cm
    corecore