228 research outputs found

    New generation of interactive platforms based on novel printed smart materials

    Get PDF
    Programa doutoral em Engenharia Eletrónica e de Computadores (área de Instrumentação e Microssistemas Eletrónicos)The last decade was marked by the computer-paradigm changing with other digital devices suddenly becoming available to the general public, such as tablets and smartphones. A shift in perspective from computer to materials as the centerpiece of digital interaction is leading to a diversification of interaction contexts, objects and applications, recurring to intuitive commands and dynamic content that can proportionate more interesting and satisfying experiences. In parallel, polymer-based sensors and actuators, and their integration in different substrates or devices is an area of increasing scientific and technological interest, which current state of the art starts to permit the use of smart sensors and actuators embodied within the objects seamlessly. Electronics is no longer a rigid board with plenty of chips. New technological advances and perspectives now turned into printed electronics in polymers, textiles or paper. We are assisting to the actual scaling down of computational power into everyday use objects, a fusion of the computer with the material. Interactivity is being transposed to objects erstwhile inanimate. In this work, strain and deformation sensors and actuators were developed recurring to functional polymer composites with metallic and carbonaceous nanoparticles (NPs) inks, leading to capacitive, piezoresistive and piezoelectric effects, envisioning the creation of tangible user interfaces (TUIs). Based on smart polymer substrates such as polyvinylidene fluoride (PVDF) or polyethylene terephthalate (PET), among others, prototypes were prepared using piezoelectric and dielectric technologies. Piezoresistive prototypes were prepared with resistive inks and restive functional polymers. Materials were printed by screen printing, inkjet printing and doctor blade coating. Finally, a case study of the integration of the different materials and technologies developed is presented in a book-form factor.A última década foi marcada por uma alteração do paradigma de computador pelo súbito aparecimento dos tablets e smartphones para o público geral. A alteração de perspetiva do computador para os materiais como parte central de interação digital levou a uma diversificação dos contextos de interação, objetos e aplicações, recorrendo a comandos intuitivos e conteúdos dinâmicos capazes de tornarem a experiência mais interessante e satisfatória. Em simultâneo, sensores e atuadores de base polimérica, e a sua integração em diferentes substratos ou dispositivos é uma área de crescente interesse científico e tecnológico, e o atual estado da arte começa a permitir o uso de sensores e atuadores inteligentes perfeitamente integrados nos objetos. Eletrónica já não é sinónimo de placas rígidas cheias de componentes. Novas perspetivas e avanços tecnológicos transformaram-se em eletrónica impressa em polímeros, têxteis ou papel. Neste momento estamos a assistir à redução da computação a objetos do dia a dia, uma fusão do computador com a matéria. A interatividade está a ser transposta para objetos outrora inanimados. Neste trabalho foram desenvolvidos atuadores e sensores e de pressão e de deformação com recurso a compostos poliméricos funcionais com tintas com nanopartículas (NPs) metálicas ou de base carbónica, recorrendo aos efeitos capacitivo, piezoresistivo e piezoelétrico, com vista à criação de interfaces de usuário tangíveis (TUIs). Usando substratos poliméricos inteligentes tais como fluoreto de polivinilideno (PVDF) ou politereftalato de etileno (PET), entre outos, foi possível a preparação de protótipos de tecnologia piezoelétrica ou dielétrica. Os protótipos de tecnologia piezoresistiva foram feitos com tintas resistivas e polímeros funcionais resistivos. Os materiais foram impressos por serigrafia, jato de tinta, impressão por aerossol e revestimento de lâmina doctor blade. Para terminar, é apresentado um caso de estudo da integração dos diferentes materiais e tecnologias desenvolvidos sob o formato de um livro.This project was supported by FCT – Fundação para a Ciência e a Tecnologia, within the doctorate grant with reference SFRH/BD/110622/2015, by POCH – Programa Operacional Capital Humano, and by EU – European Union

    Towards an efficient haptic rendering using data-driven modeling

    Full text link
    This thesis focuses on the optimisation of haptic rendering of interactions with deformable models. The research demonstrated that data-driven techniques can produce a real-time, accurate and complex simulation experience. Applications include, but not limited to, virtual training, rapid prototyping, virtual presence, and entertainment

    Sensing Highly Non-Rigid Objects with RGBD Sensors for Robotic Systems

    Get PDF
    The goal of this research is to enable a robotic system to manipulate clothing and other highly non-rigid objects using an RGBD sensor. The focus of this thesis is to define and test various algorithms / models that are used to solve parts of the laundry process (i.e. handling, classifying, sorting, unfolding, and folding). First, a system is presented for automatically extracting and classifying items in a pile of laundry. Using only visual sensors, the robot identifies and extracts items sequentially from the pile. When an item is removed and isolated, a model is captured of the shape and appearance of the object, which is then compared against a dataset of known items. The contributions of this part of the laundry process are a novel method for extracting articles of clothing from a pile of laundry, a novel method of classifying clothing using interactive perception, and a multi-layer approach termed L-M-H, more specifically L-C-S-H for clothing classification. This thesis describes two different approaches to classify clothing into categories. The first approach relies upon silhouettes, edges, and other low-level image measurements of the articles of clothing. Experiments from the first approach demonstrate the ability of the system to efficiently classify and label into one of six categories (pants, shorts, short-sleeve shirt, long-sleeve shirt, socks, or underwear). These results show that, on average, classification rates using robot interaction are 59% higher than those that do not use interaction. The second approach relies upon color, texture, shape, and edge information from 2D and 3D data within a local and global perspective. The multi-layer approach compartmentalizes the problem into a high (H) layer, multiple mid-level (characteristics(C), selection masks(S)) layers, and a low (L) layer. This approach produces \u27local\u27 solutions to solve the global classification problem. Experiments demonstrate the ability of the system to efficiently classify each article of clothing into one of seven categories (pants, shorts, shirts, socks, dresses, cloths, or jackets). The results presented in this paper show that, on average, the classification rates improve by +27.47% for three categories, +17.90% for four categories, and +10.35% for seven categories over the baseline system, using support vector machines. Second, an algorithm is presented for automatically unfolding a piece of clothing. A piece of cloth is pulled in different directions at various points of the cloth in order to flatten the cloth. The features of the cloth are extracted and calculated to determine a valid location and orientation in which to interact with it. The features include the peak region, corner locations, and continuity / discontinuity of the cloth. In this thesis, a two-stage algorithm is presented, introducing a novel solution to the unfolding / flattening problem using interactive perception. Simulations using 3D simulation software, and experiments with robot hardware demonstrate the ability of the algorithm to flatten pieces of laundry using different starting configurations. These results show that, at most, the algorithm flattens out a piece of cloth from 11.1% to 95.6% of the canonical configuration. Third, an energy minimization algorithm is presented that is designed to estimate the configuration of a deformable object. This approach utilizes an RGBD image to calculate feature correspondence (using SURF features), depth values, and boundary locations. Input from a Kinect sensor is used to segment the deformable surface from the background using an alpha-beta swap algorithm. Using this segmentation, the system creates an initial mesh model without prior information of the surface geometry, and it reinitializes the configuration of the mesh model after a loss of input data. This approach is able to handle in-plane rotation, out-of-plane rotation, and varying changes in translation and scale. Results display the proposed algorithm over a dataset consisting of seven shirts, two pairs of shorts, two posters, and a pair of pants. The current approach is compared using a simulated shirt model in order to calculate the mean square error of the distance from the vertices on the mesh model to the ground truth, provided by the simulation model

    Capturing tactile properties of real surfaces for haptic reproduction

    Get PDF
    Tactile feedback of an object’s surface enables us to discern its material properties and affordances. This understanding is used in digital fabrication processes by creating objects with high-resolution surface variations to influence a user’s tactile perception. As the design of such surface haptics commonly relies on knowledge from real-life experiences, it is unclear how to adapt this information for digital design methods. In this work, we investigate replicating the haptics of real materials. Using an existing process for capturing an object’s microgeometry, we digitize and reproduce the stable surface information of a set of 15 fabric samples. In a psychophysical experiment, we evaluate the tactile qualities of our set of original samples and their replicas. From our results, we see that direct reproduction of surface variations is able to influence different psychophysical dimensions of the tactile perception of surface textures. While the fabrication process did not preserve all properties, our approach underlines that replication of surface microgeometries benefits fabrication methods in terms of haptic perception by covering a large range of tactile variations. Moreover, by changing the surface structure of a single fabricated material, its material perception can be influenced. We conclude by proposing strategies for capturing and reproducing digitized textures to better resemble the perceived haptics of the originals

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Computing gripping points in 2D parallel surfaces via polygon clipping

    Get PDF

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    \u3cem\u3eGRASP News\u3c/em\u3e: Volume 9, Number 1

    Get PDF
    The past year at the GRASP Lab has been an exciting and productive period. As always, innovation and technical advancement arising from past research has lead to unexpected questions and fertile areas for new research. New robots, new mobile platforms, new sensors and cameras, and new personnel have all contributed to the breathtaking pace of the change. Perhaps the most significant change is the trend towards multi-disciplinary projects, most notable the multi-agent project (see inside for details on this, and all the other new and on-going projects). This issue of GRASP News covers the developments for the year 1992 and the first quarter of 1993
    corecore