5 research outputs found

    SenseBack - An implantable system for bidirectional neural interfacing

    Get PDF
    Chronic in-vivo neurophysiology experiments require highly miniaturized, remotely powered multi-channel neural interfaces which are currently lacking in power or flexibility post implantation. In this article, to resolve this problem we present the SenseBack system, a post-implantation reprogrammable wireless 32-channel bidirectional neural interfacing that can enable chronic peripheral electrophysiology experiments in freely behaving small animals. The large number of channels for a peripheral neural interface, coupled with fully implantable hardware and complete software flexibility enable complex in-vivo studies where the system can adapt to evolving study needs as they arise. In complementary ex-vivo and in-vivo preparations, we demonstrate that this system can record neural signals and perform high-voltage, bipolar stimulation on any channel. In addition, we demonstrate transcutaneous power delivery and Bluetooth 5 data communication with a PC. The SenseBack system is capable of stimulation on any channel with ±20 V of compliance and up to 315 μA of current, and highly configurable recording with per-channel adjustable gain and filtering with 8 sets of 10-bit ADCs to sample data at 20 kHz for each channel. To the best of our knowledge this is the first such implantable research platform offering this level of performance and flexibility post-implantation (including complete reprogramming even after encapsulation) for small animal electrophysiology. Here we present initial acute trials, demonstrations and progress towards a system that we expect to enable a wide range of electrophysiology experiments in freely behaving animals

    W:Ti flexible transversal electrode array for peripheral nerve stimulation: a feasibility study

    Get PDF
    The development of hardware for neural interfacing remains a technical challenge. We introduce a flexible, transversal intraneural tungsten:titanium electrode array for acute studies. We characterize the electrochemical properties of this new combination of tungsten and titanium using cyclic voltammetry and electrochemical impedance spectroscopy. With an in-vivo rodent study, we show that the stimulation of peripheral nerves with this electrode array is possible and that more than half of the electrode contacts can yield a stimulation selectivity index of 0.75 or higher at low stimulation currents. This feasibility study paves the way for the development of future cost-effective and easy-to-fabricate neural interfacing electrodes for acute settings, which ultimately can inform the development of technologies that enable bi-directional communication with the human nervous system

    Enhancing selectivity of minimally invasive peripheral nerve interfaces using combined stimulation and high frequency block: from design to application

    Get PDF
    The discovery of the excitable property of nerves was a fundamental step forward in our knowledge of the nervous system and our ability to interact with it. As the injection of charge into tissue can drive its artificial activation, devices have been conceived that can serve healthcare by substituting the input or output of the peripheral nervous system when damage or disease has rendered it inaccessible or its action pathological. Applications are far-ranging and transformational as can be attested by the success of neuroprosthetics such as the cochlear implant. However, the body’s immune response to invasive implants have prevented the use of more selective interfaces, leading to therapy side-effects and off-target activation. The inherent tradeoff between the selectivity and invasiveness of neural interfaces, and the consequences thereof, is still a defining problem for the field. More recently, continued research into how nervous tissue responds to stimulation has led to the discovery of High Frequency Alternating Current (HFAC) block as a stimulation method with inhibitory effects for nerve conduction. While leveraging the structure of the peripheral nervous system, this neuromodulation technique could be a key component in efforts to improve the selectivity-invasiveness tradeoff and provide more effective neuroprosthetic therapy while retaining the safety and reliability of minimally invasive neural interfaces. This thesis describes work investigating the use of HFAC block to improve the selectivity of peripheral nerve interfaces, towards applications such as bladder control or vagus nerve stimulation where selective peripheral nerve interfaces cannot be used, and yet there is an unmet need for more selectivity from stimulation-based therapy. An overview of the underlying neuroanatomy and electrophysiology of the peripheral nervous system combined with a review of existing electrode interfaces and electrochemistry will serve to inform the problem space. Original contributions are the design of a custom multi-channel stimulator able to combine conventional and high frequency stimulation, establishing a suitable experimental platform for ex-vivo electrophysiology of the rat sciatic nerve model for HFAC block, and exploratory experiments to determine the feasibility of using HFAC block in combination with conventional stimulation to enhance the selectivity of minimally-invasive peripheral nerve interfaces.Open Acces

    SenseBack - implant considerations for an implantable neural stimulation and recording device

    Get PDF
    This paper describes a fully implantable and highlycompact neural interface platform for chronic (>6 month) ratand small rodent experiments. It provides 32 channels of highlyflexible neural stimulation and recording with wireless controland data readout, as well as wireless transcutaneous power. Allthe system firmware is fully upgradeable over the air (even afterimplantation) allowing future enhancements such as closed loopoperation or data filtering. This paper focuses on the implantconsiderations – i.e. design and manufacture of the physicalplatform, encapsulation, wireless connections and testing
    corecore