4,189 research outputs found

    Quantum key distribution over 658 km fiber with distributed vibration sensing

    Full text link
    Twin-field quantum key distribution (TF-QKD) promises ultra-long secure key distribution which surpasses the rate distance limit and can reduce the number of the trusted nodes in long-haul quantum network. Tremendous efforts have been made towards implementation of TF-QKD, among which, the secure key with finite size analysis can distribute more than 500 km in the lab and in the field. Here, we demonstrate the sending-or-not-sending TF-QKD experimentally, achieving a secure key distribution with finite size analysis over 658 km ultra-low-loss optical fiber, improve the secure distance record by around 100 km. Meanwhile, in a TF-QKD system, any phase fluctuation due to temperature variation and ambient variation during the channel must be recorded and compensated, and all these phase information can then be utilized to sense the channel vibration perturbations. With our QKD system, we recovered the external vibrational perturbations on the fiber generated by an artificial vibroseis and successfully located the perturbation position with a resolution better than 1 km. Our results not only set a new distance record of QKD, but also demonstrate that the redundant information of TF-QKD can be used for remote sensing of the channel vibration, which can find applications in earthquake detection and landslide monitoring besides secure communication.Comment: 20 pages, 4 figures and 1 tabl

    Twin-field quantum key distribution with local frequency reference

    Full text link
    Twin-field quantum key distribution (TF-QKD) overcomes the linear rate-loss limit, which promises a boost of secure key rate over long distance. However, the complexity of eliminating the frequency differences between the independent laser sources hinders its practical application. Here, taking the saturated absorption spectroscopy of acetylene as an absolute reference, we propose and demonstrate a simple and practical approach to realize TF-QKD without requiring relative frequency control of the independent laser sources. Adopting the 4-intensity sending-or-not-sending TF-QKD protocol, we experimentally demonstrate the TF-QKD over 502 km, 301 km and 201 km ultra-low loss optical fiber respectively. We expect this high-performance scheme will find widespread usage in future intercity and free-space quantum communication networks.Comment: 13 pages, 5 figures, 7 table

    Experimental Side-Channel-Free Quantum Key Distribution

    Full text link
    Quantum key distribution can provide unconditionally secure key exchange for remote users in theory. In practice, however, in most quantum key distribution systems, quantum hackers might steal the secure keys by listening to the side channels in the source, such as the photon frequency spectrum, emission time, propagation direction, spatial angular momentum, and so on. It is hard to prevent such kinds of attacks because side channels may exist in any of the encoding space whether the designers take care of or not. Here we report an experimental realization of a side-channel-free quantum key distribution protocol which is not only measurement-device-independent, but also immune to all side-channel attacks in the source. We achieve a secure key rate of 4.80e-7 per pulse through 50 km fiber spools.Comment: 23 pages, 5 figure

    Twin-field quantum key distribution without optical frequency dissemination

    Full text link
    Twin-field (TF) quantum key distribution (QKD) has rapidly risen as the most viable solution to long-distance secure fibre communication thanks to its fundamentally repeater-like rate-loss scaling. However, its implementation complexity, if not successfully addressed, could impede or even prevent its advance into real-world. To satisfy its requirement for twin-field coherence, all present setups adopted essentially a gigantic, resource-inefficient interferometer structure that lacks scalability that mature QKD systems provide with simplex quantum links. Here we introduce a novel technique that can stabilise an open channel without using a closed interferometer and has general applicability to phase-sensitive quantum communications. Using locally generated frequency combs to establish mutual coherence, we develop a simple and versatile TF-QKD setup that does not need service fibre and can operate over links of 100 km asymmetry. We confirm the setup's repeater-like behaviour and obtain a finite-size rate of 0.32 bit/s at a distance of 615.6 km.Comment: 14 pages, 7 figure

    Implementation security in quantum key distribution

    Full text link
    The problem of implementation security in quantum key distribution (QKD) refers to the difficulty of meeting the requirements of mathematical security proofs in real-life QKD systems. Here, we provide a succint review on this topic, focusing on discrete variable QKD setups. Particularly, we discuss some of their main vulnerabilities and comment on possible approaches to overcome them.Comment: Submitted to Advanced Quantum Technologie

    Phase Noise in Real-World Twin-Field Quantum Key Distribution

    Full text link
    We investigate the impact of noise sources in real-world implementations of Twin-Field Quantum Key Distribution (TF-QKD) protocols, focusing on phase noise from photon sources and connecting fibers. Our work emphasizes the role of laser quality, network topology, fiber length, arm balance, and detector performance in determining key rates. Remarkably, it reveals that the leading TF-QKD protocols are similarly affected by phase noise despite different mechanisms. Our study demonstrates duty cycle improvements of over 2x through narrow-linewidth lasers and phase-control techniques, highlighting the potential synergy with high-precision time/frequency distribution services. Ultrastable lasers, evolving toward integration and miniaturization, offer promise for agile TF-QKD implementations on existing networks. Properly addressing phase noise and practical constraints allows for consistent key rate predictions, protocol selection, and layout design, crucial for establishing secure long-haul links for the Quantum Communication Infrastructures under development in several countries.Comment: 18 pages, 8 figures, 2 table
    corecore