201 research outputs found

    KeyForge: Mitigating Email Breaches with Forward-Forgeable Signatures

    Full text link
    Email breaches are commonplace, and they expose a wealth of personal, business, and political data that may have devastating consequences. The current email system allows any attacker who gains access to your email to prove the authenticity of the stolen messages to third parties -- a property arising from a necessary anti-spam / anti-spoofing protocol called DKIM. This exacerbates the problem of email breaches by greatly increasing the potential for attackers to damage the users' reputation, blackmail them, or sell the stolen information to third parties. In this paper, we introduce "non-attributable email", which guarantees that a wide class of adversaries are unable to convince any third party of the authenticity of stolen emails. We formally define non-attributability, and present two practical system proposals -- KeyForge and TimeForge -- that provably achieve non-attributability while maintaining the important protection against spam and spoofing that is currently provided by DKIM. Moreover, we implement KeyForge and demonstrate that that scheme is practical, achieving competitive verification and signing speed while also requiring 42% less bandwidth per email than RSA2048

    A counterexample to the chain rule for conditional HILL entropy

    Get PDF
    Most entropy notions H(.) like Shannon or min-entropy satisfy a chain rule stating that for random variables X,Z, and A we have H(X|Z,A)≄H(X|Z)−|A|. That is, by conditioning on A the entropy of X can decrease by at most the bitlength |A| of A. Such chain rules are known to hold for some computational entropy notions like Yao’s and unpredictability-entropy. For HILL entropy, the computational analogue of min-entropy, the chain rule is of special interest and has found many applications, including leakage-resilient cryptography, deterministic encryption, and memory delegation. These applications rely on restricted special cases of the chain rule. Whether the chain rule for conditional HILL entropy holds in general was an open problem for which we give a strong negative answer: we construct joint distributions (X,Z,A), where A is a distribution over a single bit, such that the HILL entropy H HILL (X|Z) is large but H HILL (X|Z,A) is basically zero. Our counterexample just makes the minimal assumption that NP⊈P/poly. Under the stronger assumption that injective one-way function exist, we can make all the distributions efficiently samplable. Finally, we show that some more sophisticated cryptographic objects like lossy functions can be used to sample a distribution constituting a counterexample to the chain rule making only a single invocation to the underlying object

    Secure Access control Technology towards Data Sharing and Storage in Cloud Computing

    Get PDF
    Cloud computing is a type of appropriated computing wherein assets and application stages are disseminated over the Internet through on request and pay on use premise. Many cloud storage encryption schemes have been acquainted with shield data from the individuals who don't approach. We make utilization of many schemes which accepted that cloud storage providers are protected and secure. Be that as it may, by and by, a few specialists (i.e., coercers) may attempt to uncover data from the cloud without the authorization of the data proprietor. In this paper, we exhibit that the location of obscurity clients with the utilization of our productive deniable encryption conspire, while the phony clients tries to get data from the cloud they will be furnished with some phony files. With the goal that programmers can't hack the files from the cloud. Also, they are happy with their copy record by that way we can secure the proprietor mystery files or confidential files

    The art of post-truth in quantum cryptography

    Full text link
    L’établissement de clĂ© quantique (abrĂ©gĂ© QKD en anglais) permet Ă  deux participants distants, Alice et Bob, d’établir une clĂ© secrĂšte commune (mais alĂ©atoire) qui est connue uniquement de ces deux personnes (c’est-Ă -dire inconnue d’Ève et de tout autre tiers parti). La clĂ© secrĂšte partagĂ©e est inconditionnellement privĂ©e et peut ĂȘtre plus tard utilisĂ©e, par Alice et Bob, pour transmettre des messages en toute confidentialitĂ©, par exemple sous la forme d’un masque jetable. Le protocole d’établissement de clĂ© quantique garantit la confidentialitĂ© inconditionnelle du message en prĂ©sence d’un adversaire (Ève) limitĂ© uniquement par les lois de la mĂ©canique quantique, et qui ne peut agir sur l’information que se partagent Alice et Bob que lors de son transit Ă  travers des canaux classiques et quantiques. Mais que se passe-t-il lorsque Ève a le pouvoir supplĂ©mentaire de contraindre Alice et/ou Bob Ă  rĂ©vĂ©ler toute information, jusqu’alors gardĂ©e secrĂšte, gĂ©nĂ©rĂ©e lors de l’exĂ©cution (rĂ©ussie) du protocole d’établissement de clĂ© quantique (Ă©ventuellement suite Ă  la transmission entre Alice et Bob d’un ou plusieurs messages chiffrĂ©s classique Ă  l’aide de cette clĂ©), de maniĂšre Ă  ce qu’Ève puisse reproduire l’entiĂšretĂ© du protocole et retrouver la clĂ© (et donc aussi le message qu’elle a chiffrĂ©) ? Alice et Bob peuvent-ils nier la crĂ©ation de la clĂ© de maniĂšre plausible en rĂ©vĂ©lant des informations mensongĂšres pour qu’Ève aboutisse sur une fausse clĂ© ? Les protocoles d’établissement de clĂ© quantiques peuvent-ils tels quels garantir la possibilitĂ© du doute raisonnable ? Dans cette thĂšse, c’est sur cette Ă©nigme que nous nous penchons. Dans le reste de ce document, nous empruntons le point de vue de la thĂ©orie de l’information pour analyser la possibilitĂ© du doute raisonnable lors de l’application de protocoles d’établissement de clĂ© quantiques. Nous formalisons rigoureusement diffĂ©rents types et degrĂ©s de doute raisonnable en fonction de quel participant est contraint de rĂ©vĂ©ler la clĂ©, de ce que l’adversaire peut demander, de la taille de l’ensemble de fausses clĂ©s qu’Alice et Bob peuvent prĂ©tendre Ă©tablir, de quand les parties doivent dĂ©cider de la ou des clĂ©s fictives, de quelle est la tolĂ©rance d’Ève aux Ă©vĂ©nements moins probables, et du recours ou non Ă  des hypothĂšses de calcul. Nous dĂ©finissons ensuite rigoureusement une classe gĂ©nĂ©rale de protocoles d’établissement de clĂ© quantiques, basĂ©e sur un canal quantique presque parfait, et prouvons que tout protocole d’établissement de clĂ© quantique appartenant Ă  cette classe satisfait la dĂ©finition la plus gĂ©nĂ©rale de doute raisonnable : Ă  savoir, le doute raisonnable universel. Nous en fournissons quelques exemples. Ensuite, nous proposons un protocole hybride selon lequel tout protocole QKD peut ĂȘtre au plus existentiellement dĂ©niable. De plus, nous dĂ©finissons une vaste classe de protocoles d’établissement de clĂ© quantiques, que nous appelons prĂ©paration et mesure, et prouvons l’impossibilitĂ© d’instiller lors de ceux-ci tout degrĂ© de doute raisonnable. Ensuite, nous proposons une variante du protocole, que nous appelons prĂ©paration et mesure floues qui offre un certain niveau de doute raisonnable lorsque Ève est juste. Par la suite, nous proposons un protocole hybride en vertu duquel tout protocole d’établissement de clĂ© quantique ne peut offrir au mieux que l’option de doute raisonnable existentiel. Finalement, nous proposons une variante du protocole, que nous appelons mono-dĂ©niable qui est seulement Alice dĂ©niable ou Bob dĂ©niable (mais pas les deux).Quantum Key Establishment (QKD) enables two distant parties Alice and Bob to establish a common random secret key known only to the two of them (i.e., unknown to Eve and anyone else). The common secret key is information-theoretically secure. Later, Alice and Bob may use this key to transmit messages securely, for example as a one-time pad. The QKD protocol guarantees the confidentiality of the key from an information-theoretic perspective against an adversary Eve who is only limited by the laws of quantum theory and can act only on the signals as they pass through the classical and quantum channels. But what if Eve has the extra power to coerce Alice and/or Bob after the successful execution of the QKD protocol forcing either both or only one of them to reveal all their private information (possibly also after one or several (classical) ciphertexts encrypted with that key have been transmitted between Alice and Bob) then Eve could go through the protocol and obtain the key (hence also the message)? Can Alice and Bob deny establishment of the key plausibly by revealing fake private information and hence also a fake key? Do QKD protocols guarantee deniability for free in this case? In this Thesis, we investigate this conundrum. In the rest of this document, we take an information-theoretic perspective on deniability in quantum key establishment protocols. We rigorously formalize different levels and flavours of deniability depending on which party is coerced, what the adversary may ask, what is the size of the fake set that surreptitious parties can pretend to be established, when the parties should decide on the fake key(s), and what is the coercer’s tolerance to less likely events and possibly also computational assumptions. We then rigorously define a general class of QKD protocols, based on an almost-perfect quantum channel, and prove that any QKD protocol that belongs to this class satisfies the most general flavour of deniability, i.e.,universal deniability. Moreover, we define a broad class of QKD protocols, which we call prepare-and-measure, and prove that these protocols are not deniable in any level or flavour. Moreover, we define a class of QKD protocols, which we refer to as fuzzy prepare-andmeasure, that provides a certain level of deniability conditioned on Eve being fair. Furthermore, we propose a hybrid protocol under which any QKD protocol can be at most existentially deniable. Finally, we define a class of QKD protocols, which we refer to as mono-deniable, which is either Alice or Bob (but not both) deniable

    Wink: Deniable Secure Messaging

    Full text link
    End-to-end encrypted (E2EE) messaging is an essential first step towards combating increasingly privacy-intrusive laws. Unfortunately, it is vulnerable to compelled key disclosure -- law-mandated, coerced, or simply by device compromise. This work introduces Wink, the first plausibly-deniable messaging system protecting message confidentiality even when users are coerced to hand over keys/passwords. Wink can surreptitiously inject hidden messages in the standard random coins (e.g., salt, IVs) used by existing E2EE protocols. It does so as part of legitimate secure cryptographic functionality deployed inside widely-available trusted execution environments (TEEs) such as TrustZone. This provides a powerful mechanism for hidden untraceable communication using virtually unchanged unsuspecting existing E2EE messaging apps, as well as strong plausible deniability. Wink has been demonstrated with multiple existing E2EE applications (including Telegram and Signal) with minimal (external) instrumentation, negligible overheads, and crucially without changing on-wire message formats

    Deniable encryption protocols based on probabilistic public-key encryption

    Get PDF
    The paper proposes a new method for designing deniable encryption protocols characterized in using RSA-like probabilistic public-key encryption algorithms. Sender-, receiver-, and bi-deniable protocols are described. To provide bi-deniability in the case of attacks perfored by an active coercer stage of entity authentication is used in one of described protocols
    • 

    corecore