42 research outputs found

    Semitotal domination in trees

    Full text link
    In this paper, we study a parameter that is squeezed between arguably the two important domination parameters, namely the domination number, γ(G)\gamma(G), and the total domination number, γt(G)\gamma_t(G). A set SS of vertices in GG is a semitotal dominating set of GG if it is a dominating set of GG and every vertex in S is within distance 22 of another vertex of SS. The semitotal domination number, γt2(G)\gamma_{t2}(G), is the minimum cardinality of a semitotal dominating set of GG. We observe that γ(G)≤γt2(G)≤γt(G)\gamma(G)\leq \gamma_{t2}(G)\leq \gamma_t(G). In this paper, we give a lower bound for the semitotal domination number of trees and we characterize the extremal trees. In addition, we characterize trees with equal domination and semitotal domination numbers.Comment: revise

    A Semi-Total Domination Number of a Graph

    Get PDF
    This thesis work on the two parameters that is very important domination parameters, one parameter is known as domination number and other parameter is called as total domination number. S is defined as a set of vertices in a graph G. We characterize a set S of vertices in a graph G with no segregated vertices to be a semitotal overwhelming arrangement of G in the event that it is a ruling arrangement of G and furthermore every vertex in S is inside separation 2 of another vertex of S. The semitotal domination number, indicated by is the base cardinality of a semitotal ruling arrangement of G. We demonstrate that on the off chance that G is an associated graph on n ? 4 vertices, at that point and we describe the trees and diagrams of least degree 2 arriving at this bound

    Roman Domination in Complementary Prism Graphs

    Get PDF
    A Roman domination function on a complementary prism graph GGc is a function f : V [ V c ! {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2. The Roman domination number R(GGc) of a graph G = (V,E) is the minimum of Px2V [V c f(x) over such functions, where the complementary prism GGc of G is graph obtained from disjoint union of G and its complement Gc by adding edges of a perfect matching between corresponding vertices of G and Gc. In this paper, we have investigated few properties of R(GGc) and its relation with other parameters are obtaine

    Further Results on the Total Roman Domination in Graphs

    Full text link
    [EN] Let G be a graph without isolated vertices. A function f:V(G)-> {0,1,2} is a total Roman dominating function on G if every vertex v is an element of V(G) for which f(v)=0 is adjacent to at least one vertex u is an element of V(G) such that f(u)=2 , and if the subgraph induced by the set {v is an element of V(G):f(v)>= 1} has no isolated vertices. The total Roman domination number of G, denoted gamma tR(G) , is the minimum weight omega (f)=Sigma v is an element of V(G)f(v) among all total Roman dominating functions f on G. In this article we obtain new tight lower and upper bounds for gamma tR(G) which improve the well-known bounds 2 gamma (G)<= gamma tR(G)<= 3 gamma (G) , where gamma (G) represents the classical domination number. In addition, we characterize the graphs that achieve equality in the previous lower bound and we give necessary conditions for the graphs which satisfy the equality in the upper bound above.Cabrera Martínez, A.; Cabrera García, S.; Carrión García, A. (2020). Further Results on the Total Roman Domination in Graphs. Mathematics. 8(3):1-8. https://doi.org/10.3390/math8030349S1883Henning, M. A. (2009). A survey of selected recent results on total domination in graphs. Discrete Mathematics, 309(1), 32-63. doi:10.1016/j.disc.2007.12.044Henning, M. A., & Yeo, A. (2013). Total Domination in Graphs. Springer Monographs in Mathematics. doi:10.1007/978-1-4614-6525-6Henning, M. A., & Marcon, A. J. (2016). Semitotal Domination in Claw-Free Cubic Graphs. Annals of Combinatorics, 20(4), 799-813. doi:10.1007/s00026-016-0331-zHenning, M. . A., & Marcon, A. J. (2016). Vertices contained in all or in no minimum semitotal dominating set of a tree. Discussiones Mathematicae Graph Theory, 36(1), 71. doi:10.7151/dmgt.1844Henning, M. A., & Pandey, A. (2019). Algorithmic aspects of semitotal domination in graphs. Theoretical Computer Science, 766, 46-57. doi:10.1016/j.tcs.2018.09.019Cockayne, E. J., Dreyer, P. A., Hedetniemi, S. M., & Hedetniemi, S. T. (2004). Roman domination in graphs. Discrete Mathematics, 278(1-3), 11-22. doi:10.1016/j.disc.2003.06.004Stewart, I. (1999). Defend the Roman Empire! Scientific American, 281(6), 136-138. doi:10.1038/scientificamerican1299-136Chambers, E. W., Kinnersley, B., Prince, N., & West, D. B. (2009). Extremal Problems for Roman Domination. SIAM Journal on Discrete Mathematics, 23(3), 1575-1586. doi:10.1137/070699688Favaron, O., Karami, H., Khoeilar, R., & Sheikholeslami, S. M. (2009). On the Roman domination number of a graph. Discrete Mathematics, 309(10), 3447-3451. doi:10.1016/j.disc.2008.09.043Liu, C.-H., & Chang, G. J. (2012). Upper bounds on Roman domination numbers of graphs. Discrete Mathematics, 312(7), 1386-1391. doi:10.1016/j.disc.2011.12.021González, Y., & Rodríguez-Velázquez, J. (2013). Roman domination in Cartesian product graphs and strong product graphs. Applicable Analysis and Discrete Mathematics, 7(2), 262-274. doi:10.2298/aadm130813017gLiu, C.-H., & Chang, G. J. (2012). Roman domination on strongly chordal graphs. Journal of Combinatorial Optimization, 26(3), 608-619. doi:10.1007/s10878-012-9482-yAhangar Abdollahzadeh, H., Henning, M., Samodivkin, V., & Yero, I. (2016). Total Roman domination in graphs. Applicable Analysis and Discrete Mathematics, 10(2), 501-517. doi:10.2298/aadm160802017aAmjadi, J., Sheikholeslami, S. M., & Soroudi, M. (2019). On the total Roman domination in trees. Discussiones Mathematicae Graph Theory, 39(2), 519. doi:10.7151/dmgt.2099Cabrera Martínez, A., Montejano, L. P., & Rodríguez-Velázquez, J. A. (2019). Total Weak Roman Domination in Graphs. Symmetry, 11(6), 831. doi:10.3390/sym1106083

    Total Roman {2}-domination in graphs

    Full text link
    [EN] Given a graph G = (V, E), a function f: V -> {0, 1, 2} is a total Roman {2}-dominating function if every vertex v is an element of V for which f (v) = 0 satisfies that n-ary sumation (u)(is an element of N (v)) f (v) >= 2, where N (v) represents the open neighborhood of v, and every vertex x is an element of V for which f (x) >= 1 is adjacent to at least one vertex y is an element of V such that f (y) >= 1. The weight of the function f is defined as omega(f ) = n-ary sumation (v)(is an element of V) f (v). The total Roman {2}-domination number, denoted by gamma(t)({R2})(G), is the minimum weight among all total Roman {2}-dominating functions on G. In this article we introduce the concepts above and begin the study of its combinatorial and computational properties. For instance, we give several closed relationships between this parameter and other domination related parameters in graphs. In addition, we prove that the complexity of computing the value gamma(t)({R2})(G) is NP-hard, even when restricted to bipartite or chordal graphsCabrera García, S.; Cabrera Martinez, A.; Hernandez Mira, FA.; Yero, IG. (2021). Total Roman {2}-domination in graphs. Quaestiones Mathematicae. 44(3):411-444. https://doi.org/10.2989/16073606.2019.1695230S41144444

    International Journal of Mathematical Combinatorics, Vol.6A

    Get PDF
    The International J.Mathematical Combinatorics (ISSN 1937-1055) is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly comprising 460 pages approx. per volume, which publishes original research papers and survey articles in all aspects of Smarandache multi-spaces, Smarandache geometries, mathematical combinatorics, non-euclidean geometry and topology and their applications to other sciences

    A new approach on locally checkable problems

    Full text link
    By providing a new framework, we extend previous results on locally checkable problems in bounded treewidth graphs. As a consequence, we show how to solve, in polynomial time for bounded treewidth graphs, double Roman domination and Grundy domination, among other problems for which no such algorithm was previously known. Moreover, by proving that fixed powers of bounded degree and bounded treewidth graphs are also bounded degree and bounded treewidth graphs, we can enlarge the family of problems that can be solved in polynomial time for these graph classes, including distance coloring problems and distance domination problems (for bounded distances)
    corecore