3 research outputs found

    Classification of Compact Polarimetric Synthetic Aperture Radar Images

    Get PDF
    The RADARSAT Constellation Mission (RCM) was launched in June 2019. RCM, in addition to dual-polarization (DP) and fully quad-polarimetric (QP) imaging modes, provides compact polarimetric (CP) mode data. A CP synthetic aperture radar (SAR) is a coherent DP system in which a single circular polarization is transmitted followed by the reception in two orthogonal linear polarizations. A CP SAR fully characterizes the backscattered field using the Stokes parameters, or equivalently, the complex coherence matrix. This is the main advantage of a CP SAR over the traditional (non-coherent) DP SAR. Therefore, designing scene segmentation and classification methods using CP complex coherence matrix data is advocated in this thesis. Scene classification of remotely captured images is an important task in monitoring the Earth's surface. The high-resolution RCM CP SAR data can be used for land cover classification as well as sea-ice mapping. Mapping sea ice formed in ocean bodies is important for ship navigation and climate change modeling. The Canadian Ice Service (CIS) has expert ice analysts who manually generate sea-ice maps of Arctic areas on a daily basis. An automated sea-ice mapping process that can provide detailed yet reliable maps of ice types and water is desirable for CIS. In addition to linear DP SAR data in ScanSAR mode (500km), RCM wide-swath CP data (350km) can also be used in operational sea-ice mapping of the vast expanses in the Arctic areas. The smaller swath coverage of QP SAR data (50km) is the reason why the use of QP SAR data is limited for sea-ice mapping. This thesis involves the design and development of CP classification methods that consist of two steps: an unsupervised segmentation of CP data to identify homogeneous regions (superpixels) and a labeling step where a ground truth label is assigned to each super-pixel. An unsupervised segmentation algorithm is developed based on the existing Iterative Region Growing using Semantics (IRGS) for CP data and is called CP-IRGS. The constituents of feature model and spatial context model energy terms in CP-IRGS are developed based on the statistical properties of CP complex coherence matrix data. The superpixels generated by CP-IRGS are then used in a graph-based labeling method that incorporates the global spatial correlation among super-pixels in CP data. The classifications of sea-ice and land cover types using test scenes indicate that (a) CP scenes provide improved sea-ice classification than the linear DP scenes, (b) CP-IRGS performs more accurate segmentation than that using only CP channel intensity images, and (c) using global spatial information (provided by a graph-based labeling approach) provides an improvement in classification accuracy values over methods that do not exploit global spatial correlation

    Searching for Needles in the Cosmic Haystack

    Get PDF
    Searching for pulsar signals in radio astronomy data sets is a difficult task. The data sets are extremely large, approaching the petabyte scale, and are growing larger as instruments become more advanced. Big Data brings with it big challenges. Processing the data to identify candidate pulsar signals is computationally expensive and must utilize parallelism to be scalable. Labeling benchmarks for supervised classification is costly. To compound the problem, pulsar signals are very rare, e.g., only 0.05% of the instances in one data set represent pulsars. Furthermore, there are many different approaches to candidate classification with no consensus on a best practice. This dissertation is focused on identifying and classifying radio pulsar candidates from single pulse searches. First, to identify and classify Dispersed Pulse Groups (DPGs), we developed a supervised machine learning approach that consists of RAPID (a novel peak identification algorithm), feature extraction, and supervised machine learning classification. We tested six algorithms for classification with four imbalance treatments. Results showed that classifiers with imbalance treatments had higher recall values. Overall, classifiers using multiclass RandomForests combined with Synthetic Majority Oversampling TEchnique (SMOTE) were the most efficient; they identified additional known pulsars not in the benchmark, with less false positives than other classifiers. Second, we developed a parallel single pulse identification method, D-RAPID, and introduced a novel automated multiclass labeling (ALM) technique that we combined with feature selection to improve execution performance. D-RAPID improved execution performance over RAPID by a factor of 5. We also showed that the combination of ALM and feature selection sped up the execution performance of RandomForest by 54% on average with less than a 2% average reduction in classification performance. Finally, we proposed CoDRIFt, a novel classification algorithm that is distributed for scalability and employs semi-supervised learning to leverage unlabeled data to inform classification. We evaluated and compared CoDRIFt to eleven other classifiers. The results showed that CoDRIFt excelled at classifying candidates in imbalanced benchmarks with a majority of non-pulsar signals (\u3e95%). Furthermore, CoDRIFt models created with very limited sets of labeled data (as few as 22 labeled minority class instances) were able to achieve high recall (mean = 0.98). In comparison to the other algorithms trained on similar sets, CoDRIFt outperformed them all, with recall 2.9% higher than the next best classifier and a 35% average improvement over all eleven classifiers. CoDRIFt is customizable for other problem domains with very large, imbalanced data sets, such as fraud detection and cyber attack detection

    Semisupervised PolSAR Image Classification Based on Improved Cotraining

    No full text
    corecore