14 research outputs found

    Subquadratic Encodings for Point Configurations

    Get PDF
    For many algorithms dealing with sets of points in the plane, the only relevant information carried by the input is the combinatorial configuration of the points: the orientation of each triple of points in the set (clockwise, counterclockwise, or collinear). This information is called the order type of the point set. In the dual, realizable order types and abstract order types are combinatorial analogues of line arrangements and pseudoline arrangements. Too often in the literature we analyze algorithms in the real-RAM model for simplicity, putting aside the fact that computers as we know them cannot handle arbitrary real numbers without some sort of encoding. Encoding an order type by the integer coordinates of a realizing point set is known to yield doubly exponential coordinates in some cases. Other known encodings can achieve quadratic space or fast orientation queries, but not both. In this contribution, we give a compact encoding for abstract order types that allows efficient query of the orientation of any triple: the encoding uses O(n^2) bits and an orientation query takes O(log n) time in the word-RAM model with word size w >= log n. This encoding is space-optimal for abstract order types. We show how to shorten the encoding to O(n^2 {(log log n)}^2 / log n) bits for realizable order types, giving the first subquadratic encoding for those order types with fast orientation queries. We further refine our encoding to attain O(log n/log log n) query time at the expense of a negligibly larger space requirement. In the realizable case, we show that all those encodings can be computed efficiently. Finally, we generalize our results to the encoding of point configurations in higher dimension

    Stretchability of Star-Like Pseudo-Visibility Graphs

    Get PDF
    We present advances on the open problem of characterizing vertex-edge visibility graphs (ve-graphs), reduced by results of O\u27Rourke and Streinu to a stretchability question for pseudo-polygons. We introduce star-like pseudo-polygons as a special subclass containing all the known instances of non-stretchable pseudo-polygons. We give a complete combinatorial characterization and a linear-time decision procedure for star-like pseudo-polygon stretchability and star-like ve-graph recognition. To the best of our knowledge, this is the first problem in computational geometry for which a combinatorial characterization was found by first isolating the oriented matroid substructure and then separately solving the stretchability question. It is also the first class (as opposed to isolated examples) of oriented matroids for which an efficient stretchability decision procedure based on combinatorial criteria is given. The difficulty of the general stretchability problem implied by Mnev\u27s Universality Theorem makes this a result of independent interest in the theory of oriented matroids

    Families of convex sets not representable by points

    Get PDF
    corecore