370 research outputs found

    Support-based lower bounds for the positive semidefinite rank of a nonnegative matrix

    Full text link
    The positive semidefinite rank of a nonnegative (m×n)(m\times n)-matrix~SS is the minimum number~qq such that there exist positive semidefinite (q×q)(q\times q)-matrices A1,…,AmA_1,\dots,A_m, B1,…,BnB_1,\dots,B_n such that S(k,\ell) = \mbox{tr}(A_k^* B_\ell). The most important, lower bound technique for nonnegative rank is solely based on the support of the matrix S, i.e., its zero/non-zero pattern. In this paper, we characterize the power of lower bounds on positive semidefinite rank based on solely on the support.Comment: 9 page

    Uniqueness of Nonnegative Tensor Approximations

    Full text link
    We show that for a nonnegative tensor, a best nonnegative rank-r approximation is almost always unique, its best rank-one approximation may always be chosen to be a best nonnegative rank-one approximation, and that the set of nonnegative tensors with non-unique best rank-one approximations form an algebraic hypersurface. We show that the last part holds true more generally for real tensors and thereby determine a polynomial equation so that a real or nonnegative tensor which does not satisfy this equation is guaranteed to have a unique best rank-one approximation. We also establish an analogue for real or nonnegative symmetric tensors. In addition, we prove a singular vector variant of the Perron--Frobenius Theorem for positive tensors and apply it to show that a best nonnegative rank-r approximation of a positive tensor can never be obtained by deflation. As an aside, we verify that the Euclidean distance (ED) discriminants of the Segre variety and the Veronese variety are hypersurfaces and give defining equations of these ED discriminants

    Low Rank Approximation of Binary Matrices: Column Subset Selection and Generalizations

    Get PDF
    Low rank matrix approximation is an important tool in machine learning. Given a data matrix, low rank approximation helps to find factors, patterns and provides concise representations for the data. Research on low rank approximation usually focus on real matrices. However, in many applications data are binary (categorical) rather than continuous. This leads to the problem of low rank approximation of binary matrix. Here we are given a d×nd \times n binary matrix AA and a small integer kk. The goal is to find two binary matrices UU and VV of sizes d×kd \times k and k×nk \times n respectively, so that the Frobenius norm of A−UVA - U V is minimized. There are two models of this problem, depending on the definition of the dot product of binary vectors: The GF(2)\mathrm{GF}(2) model and the Boolean semiring model. Unlike low rank approximation of real matrix which can be efficiently solved by Singular Value Decomposition, approximation of binary matrix is NPNP-hard even for k=1k=1. In this paper, we consider the problem of Column Subset Selection (CSS), in which one low rank matrix must be formed by kk columns of the data matrix. We characterize the approximation ratio of CSS for binary matrices. For GF(2)GF(2) model, we show the approximation ratio of CSS is bounded by k2+1+k2(2k−1)\frac{k}{2}+1+\frac{k}{2(2^k-1)} and this bound is asymptotically tight. For Boolean model, it turns out that CSS is no longer sufficient to obtain a bound. We then develop a Generalized CSS (GCSS) procedure in which the columns of one low rank matrix are generated from Boolean formulas operating bitwise on columns of the data matrix. We show the approximation ratio of GCSS is bounded by 2k−1+12^{k-1}+1, and the exponential dependency on kk is inherent.Comment: 38 page

    Algorithms for Approximate Subtropical Matrix Factorization

    Get PDF
    Matrix factorization methods are important tools in data mining and analysis. They can be used for many tasks, ranging from dimensionality reduction to visualization. In this paper we concentrate on the use of matrix factorizations for finding patterns from the data. Rather than using the standard algebra -- and the summation of the rank-1 components to build the approximation of the original matrix -- we use the subtropical algebra, which is an algebra over the nonnegative real values with the summation replaced by the maximum operator. Subtropical matrix factorizations allow "winner-takes-it-all" interpretations of the rank-1 components, revealing different structure than the normal (nonnegative) factorizations. We study the complexity and sparsity of the factorizations, and present a framework for finding low-rank subtropical factorizations. We present two specific algorithms, called Capricorn and Cancer, that are part of our framework. They can be used with data that has been corrupted with different types of noise, and with different error metrics, including the sum-of-absolute differences, Frobenius norm, and Jensen--Shannon divergence. Our experiments show that the algorithms perform well on data that has subtropical structure, and that they can find factorizations that are both sparse and easy to interpret.Comment: 40 pages, 9 figures. For the associated source code, see http://people.mpi-inf.mpg.de/~pmiettin/tropical

    A module-theoretic approach to matroids

    Full text link
    Speyer recognized that matroids encode the same data as a special class of tropical linear spaces and Shaw interpreted tropically certain basic matroid constructions; additionally, Frenk developed the perspective of tropical linear spaces as modules over an idempotent semifield. All together, this provides bridges between the combinatorics of matroids, the algebra of idempotent modules, and the geometry of tropical linear spaces. The goal of this paper is to strengthen and expand these bridges by systematically developing the idempotent module theory of matroids. Applications include a geometric interpretation of strong matroid maps and the factorization theorem; a generalized notion of strong matroid maps, via an embedding of the category of matroids into a category of module homomorphisms; a monotonicity property for the stable sum and stable intersection of tropical linear spaces; a novel perspective of fundamental transversal matroids; and a tropical analogue of reduced row echelon form.Comment: 22 pages; v3 minor corrections/clarifications; to appear in JPA
    • …
    corecore