13,229 research outputs found

    Theories about architecture and performance of multi-agent systems

    Get PDF
    Multi-agent systems are promising as models of organization because they are based on the idea that most work in human organizations is done based on intelligence, communication, cooperation, and massive parallel processing. They offer an alternative for system theories of organization, which are rather abstract of nature and do not pay attention to the agent level. In contrast, classical organization theories offer a rather rich source of inspiration for developing multi-agent models because of their focus on the agent level. This paper studies the plausibility of theoretical choices in the construction of multi-agent systems. Multi-agent systems have to be plausible from a philosophical, psychological, and organizational point of view. For each of these points of view, alternative theories exist. Philosophically, the organization can be seen from the viewpoints of realism and constructivism. Psychologically, several agent types can be distinguished. A main problem in the construction of psychologically plausible computer agents is the integration of response function systems with representational systems. Organizationally, we study aspects of the architecture of multi-agent systems, namely topology, system function decomposition, coordination and synchronization of agent processes, and distribution of knowledge and language characteristics among agents. For each of these aspects, several theoretical perspectives exist.

    The technological mediation of mathematics and its learning

    Get PDF
    This paper examines the extent to which mathematical knowledge, and its related pedagogy, is inextricably linked to the tools – physical, virtual, cultural – in which it is expressed. Our goal is to focus on a few exemplars of computational tools, and to describe with some illustrative examples, how mathematical meanings are shaped by their use. We begin with an appraisal of the role of digital technologies, and our rationale for focusing on them. We present four categories of digital tool-use that distinguish their differing potential to shape mathematical cognition. The four categories are: i. dynamic and graphical tools, ii. tools that outsource processing power, iii. new representational infrastructures, and iv. the implications of highbandwidth connectivity on the nature of mathematics activity. In conclusion, we draw out the implications of this analysis for mathematical epistemology and the mathematical meanings students develop. We also underline the central importance of design, both of the tools themselves and the activities in which they are embedded

    On the Fundamentality of Meaning

    Get PDF
    The mainstream view of meaning is that it is emergent, not fundamental, but some have disputed this, asserting that there is a more fundamental level of reality than that addressed by current physical theories, and that matter and meaning are in some way entangled. In this regard there are intriguing parallels between the quantum and biological domains, suggesting that there may be a more fundamental level underlying both. I argue that the organisation of this fundamental level is already to a considerable extent understood by biosemioticians, who have fruitfully integrated Peirce’s sign theory into biology; things will happen there resembling what happens with familiar life, but the agencies involved will differ in ways reflecting their fundamentality, in other words they will be less complex, but still have structures complex enough for what they have to do. According to one approach involving a collaboration with which I have been involved, a part of what they have to do, along with the need to survive and reproduce, is to stop situations becoming too chaotic, a concept that accords with familiar ‘edge of chaos’ ideas. Such an extension of sign theory (semiophysics?) needs to be explored by physicists, possible tools being computational models, existing insights into complexity, and dynamical systems theory. Such a theory will not be mathematical in the same way that conventional physics theories are mathematical: rather than being foundational, mathematics will be ‘something that life does’, something that sufficiently evolved life does because in the appropriate context so doing is of value to life
    • …
    corecore