94 research outputs found

    A passivity approach to controller-observer design for robots

    Get PDF
    Passivity-based control methods for robots, which achieve the control objective by reshaping the robot system's natural energy via state feedback, have, from a practical point of view, some very attractive properties. However, the poor quality of velocity measurements may significantly deteriorate the control performance of these methods. In this paper the authors propose a design strategy that utilizes the passivity concept in order to develop combined controller-observer systems for robot motion control using position measurements only. To this end, first a desired energy function for the closed-loop system is introduced, and next the controller-observer combination is constructed such that the closed-loop system matches this energy function, whereas damping is included in the controller- observer system to assure asymptotic stability of the closed-loop system. A key point in this design strategy is a fine tuning of the controller and observer structure to each other, which provides solutions to the output-feedback robot control problem that are conceptually simple and easily implementable in industrial robot applications. Experimental tests on a two-DOF manipulator system illustrate that the proposed controller-observer systems enable the achievement of higher performance levels compared to the frequently used practice of numerical position differentiation for obtaining a velocity estimat

    Robust Stabilization and Disturbance Rejection for Autonomous Helicopter

    Get PDF

    Robust controllers design for unknown error and exosystem: a hybid optimization and output regulation approach

    Get PDF
    This thesis addresses the problem of robustness in control in two main topics: linear output regulation when no knowledge is assumed of the modes of the exosystem, and hybrid gradient-free optimization. A framework is presented for the solution of the first problem, in which asymptotic regulation is achieved in case of a persistence of excitation condition. The stability properties of the closed-loop system are proved under a small-gain argument with no minimum phase assumption. The second part of the thesis addresses, and proposes, a solution to the gradientfree optimization problem, solved by a discrete-time direct search algorithm. The algorithm is shown to convergence to the set of minima of a particular class of non convex functions. It is, then, applied considering it coupled with a continuous-time dynamical system. A hybrid controller is developed in order to guarantee convergence to the set of minima and stability of the interconnection of the two systems. Almost global asymptotic is proven for the proposed hybrid controller. Shown to not be robust to any bounded measurement noise, a robust solution is also proposed. The aim of this thesis is to lay the ground for a solution of the output regulation problem in case the error is unknown, but a proxy optimization function is available. A controller embedding the characteristics of the two proposed approaches, as a main solution to the aforementioned problem, will be the focus of future studies

    The output regulation problem : a convergent dynamics approach

    Get PDF
    +192hlm.;24c

    Nonlinear control of feedforward systems with bounded signals

    No full text
    Published versio

    Advanced Computational-Effective Control and Observation Schemes for Constrained Nonlinear Systems

    Get PDF
    Constraints are one of the most common challenges that must be faced in control systems design. The sources of constraints in engineering applications are several, ranging from actuator saturations to safety restrictions, from imposed operating conditions to trajectory limitations. Their presence cannot be avoided, and their importance grows even more in high performance or hazardous applications. As a consequence, a common strategy to mitigate their negative effect is to oversize the components. This conservative choice could be largely avoided if the controller was designed taking all limitations into account. Similarly, neglecting the constraints in system estimation often leads to suboptimal solutions, which in turn may negatively affect the control effectiveness. Therefore, with the idea of taking a step further towards reliable and sustainable engineering solutions, based on more conscious use of the plants' dynamics, we decide to address in this thesis two fundamental challenges related to constrained control and observation. In the first part of this work, we consider the control of uncertain nonlinear systems with input and state constraints, for which a general approach remains elusive. In this context, we propose a novel closed-form solution based on Explicit Reference Governors and Barrier Lyapunov Functions. Notably, it is shown that adaptive strategies can be embedded in the constrained controller design, thus handling parametric uncertainties that often hinder the resulting performance of constraint-aware techniques. The second part of the thesis deals with the global observation of dynamical systems subject to topological constraints, such as those evolving on Lie groups or homogeneous spaces. Here, general observability analysis tools are overviewed, and the problem of sensorless control of permanent magnets electrical machines is presented as a case of study. Through simulation and experimental results, we demonstrate that the proposed formalism leads to high control performance and simple implementation in embedded digital controllers
    corecore