39 research outputs found

    A Luenberger-style Observer for Robot Manipulators with Position Measurements

    Full text link
    This paper presents a novel Luenberger-style observer for robot manipulators with position measurements. Under the assumption that the state evolutions that are to be observed have bounded velocities, it is shown that the origin of the observation error dynamics is globally exponentially stable and that the corresponding convergence rate can be made arbitrarily high by increasing a gain of the observer. Comparisons and relations between the proposed observer and existing observers are discussed. The effectiveness of the result here presented is illustrated by a simulation of the observer for the Pendubot, an underactuated two-joint manipulator.Comment: 6 pages, 2 figure

    Observer-Based Adaptive Control

    Get PDF
    The work present in this master thesis relates to output feedback adaptive control and observer design of nonlinear systems, and in particular of robot manipulators. A continuous-time velocity observer and a discrete-time adaptive velocity observer for robots are shown, and an observer backstepping controller is also proposed, which can be used together with both the observers. The resulting closed-loop system is proven to be semiglobally asymptotically stable with respect to both the velocity observation error and the tracking error, and stable with respect to the parameter estimation error. Furthermore an on-line parameter estimation method for a class of nonlinear system is presented, which can be easily extended for the robot equation. Unfortunately the way to use it in combination with the previous observer-controller has not been found and it has not been used in the experiments. In the Appendix A some technical details about the al-gorithm implementation are included, and in the Appendix B a paper already submitted to the 2002 Conference in Decision and Control is included, in which the adaptive output-feedback control scheme is extended for ship control. All the work has been conducted in the Department of Automatic Control, Lund Institute of Technology, Lund University

    Nonlinear control of feedforward systems with bounded signals

    No full text
    Published versio

    On Observer-Based Control of Nonlinear Systems

    Get PDF
    Filtering and reconstruction of signals play a fundamental role in modern signal processing, telecommunications, and control theory and are used in numerous applications. The feedback principle is an important concept in control theory. Many different control strategies are based on the assumption that all internal states of the control object are available for feedback. In most cases, however, only a few of the states or some functions of the states can be measured. This circumstance raises the need for techniques, which makes it possible not only to estimate states, but also to derive control laws that guarantee stability when using the estimated states instead of the true ones. For linear systems, the separation principle assures stability for the use of converging state estimates in a stabilizing state feedback control law. In general, however, the combination of separately designed state observers and state feedback controllers does not preserve performance, robustness, or even stability of each of the separate designs. In this thesis, the problems of observer design and observer-based control for nonlinear systems are addressed. The deterministic continuous-time systems have been in focus. Stability analysis related to the Positive Real Lemma with relevance for output feedback control is presented. Separation results for a class of nonholonomic nonlinear systems, where the combination of independently designed observers and state-feedback controllers assures stability in the output tracking problem are shown. In addition, a generalization to the observer-backstepping method where the controller is designed with respect to estimated states, taking into account the effects of the estimation errors, is presented. Velocity observers with application to ship dynamics and mechanical manipulators are also presented

    Dynamics and Control of Mechanical Systems in Offshore Engineering

    Full text link

    Nonlinear Model Predictive Control with Terminal Invariant Manifolds for Stabilization of Underactuated Surface Vessel

    Get PDF
    A nonlinear model predictive control (MPC) is proposed for underactuated surface vessel (USV) with constrained invariant manifolds. Aimed at the special structure of USV, the invariant manifold under the given controller is constructed in terms of diffeomorphism and Lyapunov stability theory. Based on MPC, the states of the USV are steered into the constrained terminal invariant manifolds. After the terminal manifolds set is reached, a linear feedback control is used to stabilize the system. The simulation results verified the effectiveness of the proposed method. It is shown that, based on invariant manifolds constraints, it is easy to get the MPC for the USV and it is suitable for practical application

    Adaptive Interval Type-2 Fuzzy Logic Control of Marine Vessels

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Fuzzy-Based Optimal Adaptive Line-of-Sight Path Following for Underactuated Unmanned Surface Vehicle with Uncertainties and Time-Varying Disturbances

    Get PDF
    This paper investigates the path following control problem for an underactuated unmanned surface vehicle (USV) in the presence of dynamical uncertainties and time-varying external disturbances. Based on fuzzy optimization algorithm, an improved adaptive line-of-sight (ALOS) guidance law is proposed, which is suitable for straight-line and curve paths. On the basis of guidance information provided by LOS, a three-degree-of-freedom (DOF) dynamic model of an underactuated USV has been used to design a practical path following controller. The controller is designed by combining backstepping method, neural shunting model, neural network minimum parameter learning method, and Nussbaum function. Neural shunting model is used to solve the problem of “explosion of complexity,” which is an inherent illness of backstepping algorithm. Meanwhile, a simpler neural network minimum parameter learning method than multilayer neural network is employed to identify the uncertainties and time-varying external disturbances. In particular, Nussbaum function is introduced into the controller design to solve the problem of unknown control gain coefficient. And much effort is made to obtain the stability for the closed-loop control system, using the Lyapunov stability theory. Simulation experiments demonstrate the effectiveness and reliability of the improved LOS guidance algorithm and the path following controller

    Modelling and control of subsea installation

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore