10 research outputs found

    Semiempirical Modeling of Reset Transitions in Unipolar Resistive-Switching based Memristors

    Get PDF
    We have measured the transition process from the high to low resistivity states, i.e., the reset process of resistive switching based memristors based on Ni/HfO2/Si-n+ structures, and have also developed an analytical model for their electrical characteristics. When the characteristic curves are plotted in the current-voltage (I-V) domain a high variability is observed. In spite of that, when the same curves are plotted in the charge-flux domain (Q-phi), they can be described by a simple model containing only three parameters: the charge (Qrst) and the flux (rst) at the reset point, and an exponent, n, relating the charge and the flux before the reset transition. The three parameters can be easily extracted from the Q-phi plots. There is a strong correlation between these three parameters, the origin of which is still under study

    Parameter extraction techniques for the analysis and modeling of resistive memories

    Get PDF
    A revision of the different numerical techniques employed to extract resistive switching (RS) and modeling parameters is presented. The set and reset voltages, commonly used for variability estimation, are calculated for different resistive memory technologies. The methodologies to extract the series resistance and the parameters linked to the charge-flux memristive modeling approach are also described. It is found that the obtained cycle-to-cycle (C2C) variability depends on the numerical technique used. This result is important, and it implies that when analyzing C2C variability, the extraction technique should be described to perform fair comparisons between different resistive memory technologies. In addition to the use of extensive experimental data for different types of resistive memories, we have also included kinetic Monte Carlo (kMC) simulations to study the formation and rupture events of the percolation paths that constitute the conductive filaments (CF) that allow resistive switching operation in filamentary unipolar and bipolar devices.Consejería de Conocimiento, Investigaci ́on y Universidad, Junta de Andalucía (Spain) and the FEDER program for the projects A.TIC.117.UGR18, B-TIC-624-UGR20 and IE2017-5414Ramón y Cajal grant No. RYC2020-030150-IFunding for open access charge: Universidad de Granada/CBU

    An experimental and simulation study of the role of thermal effects on variability in TiN/Ti/HfO2/W resistive switching nonlinear devices

    Get PDF
    An in-depth simulation and experimental study has been performed to analyze thermal effects on the variability of resistive memories. Kinetic Monte Carlo (kMC) simulations, that reproduce well the nonlinearity and stochasticity of resistive switching devices, have been employed to explain the experimental results. The series resistance and the transition voltages and currents have been extracted from devices based on the TiN/Ti/HfO2/W stack we have fabricated and measured at temperatures ranging from 77 K to 350 K. We observed that the variability for all the magnitudes analyzed was much higher at low temperatures. In the kMC simulations, we obtained conductive filaments (CFs) with less compactness at low temperatures. This led us to explain the higher variability, based on the variations of the CF morphology and density seen at low temperatures

    Modeling the variability of Au/ Ti/h BN/Au memris t ive devices

    Get PDF
    The variability of memristive devices using multilayer hexagonal boron nitride (h-BN) coupled with Ti and Au electrodes (i.e., Au/Ti/h-BN/Au) is analyzed in depth using different numerical techniques. We extract the reset voltage using three different methods, quantified its cycle-to-cycle variability, calculated the charge and flux that allows to minimize the effects of electric noise and the inherent stochasticity of resistive switching, described the device variability using time series analyses to assess the “memory” effect, and employed a circuit breaker simulator to understand the formation and rupture of the percolation paths that produce the switching. We conclude that the cycle-to-cycle variability of the Au/Ti/h-BN/Au devices presented here is higher than that previously observed in Au/h-BN/Au devices, and hence they may be useful for data encryption.Ministry of Science and Technology of China (2019YFE0124200, 2018YFE0100800)National Natural Science Foundation of China (61874075)Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía (Spain) and European Regional Development Fund (ERDF) under projects A-TIC-117-UGR18, A-FQM-66-UGR20, A-FQM-345- UGR18, B-TIC-624-UGR20 and IE2017-5414Grant PGC2018-098860-B-I00 supported by MCIU/AEI/FEDERMaria de Maeztu” Excellence Unit IMAG, reference CEX2020-001105-M, funded by MCIN/AEI/10.13039/501100011033King Abdullah University of Science and Technolog

    Estudio de la conmutación resistiva a partir de la caracterización eléctrica de estructuras MIM

    Get PDF
    En los últimos años, la búsqueda de sustitutos para la actual tecnología CMOS en la que se basan la mayoría de memorias de estado sólido, como las flash, se ha incrementado. Ello ha causado que fenómenos como la conmutación resistiva (resistive switching o RS) se estudien cada vez más, ya que pueden ser la base de una nueva familia de dispositivos de almacenamiento emergentes, entre los cuales están las memorias RAM resistivas, denominadas ReRAMs o RRAMs. Esta tesis se centra principalmente en la caracterización de estructuras metal-aislante-metal (MIM) que presentan conmutación resistiva, cuyo aislante está constituido por un óxido de metal de transición. El trabajo que aquí se presenta estudia en detalle la conmutación resistiva en estructuras metal-aislante-metal, con especial interés (aunque no únicamente) en el estudio de dispositivos cuyo dieléctrico es óxido de hafnio, con el objetivo de caracterizar eléctricamente el materialDepartamento de Electricidad y ElectrónicaDoctorado en Físic

    Electronic Nanodevices

    Get PDF
    The start of high-volume production of field-effect transistors with a feature size below 100 nm at the end of the 20th century signaled the transition from microelectronics to nanoelectronics. Since then, downscaling in the semiconductor industry has continued until the recent development of sub-10 nm technologies. The new phenomena and issues as well as the technological challenges of the fabrication and manipulation at the nanoscale have spurred an intense theoretical and experimental research activity. New device structures, operating principles, materials, and measurement techniques have emerged, and new approaches to electronic transport and device modeling have become necessary. Examples are the introduction of vertical MOSFETs in addition to the planar ones to enable the multi-gate approach as well as the development of new tunneling, high-electron mobility, and single-electron devices. The search for new materials such as nanowires, nanotubes, and 2D materials for the transistor channel, dielectrics, and interconnects has been part of the process. New electronic devices, often consisting of nanoscale heterojunctions, have been developed for light emission, transmission, and detection in optoelectronic and photonic systems, as well for new chemical, biological, and environmental sensors. This Special Issue focuses on the design, fabrication, modeling, and demonstration of nanodevices for electronic, optoelectronic, and sensing applications

    Switchable silver clusters:crystals for novel electronics

    Get PDF
    Metallic nanoclusters form a family of novel materials with atomically defined hybrid organic/inorganic structures. Among these materials, clusters containing 44 silver atoms have emerged as one of the most interesting, because of their exceptional electronic and optical properties. Recently synthetic progresses made possible their crystallisation. Crystals of Ag44 clusters form what is defined as a superlattice, a periodic three dimensional structure, whose properties are expected to depend on the collective interaction of its constituents. In this thesis, clusters with a molecular formula Ag((SC6H4F)30)4- have been crystallized in the presence of four tetraphenyl phosponium [(C6H5)4P+] counterions and the crystals have been fully characterized. The response of these crystals to an external electric field was then tested in a two- and four- terminal configuration, and showed conductivity switching at high voltages between a less and a more conductive phase. Single crystal X-ray diffraction measurements showed that each of the conductive phase was characterized by a different crystal structure, suggesting an electric-field induced phase transition. The change in properties is attributed to the collective displacement of the tetraphenyl phosphonium counterions, which causes a change in orientation of 3 of the 30 fluorophenyl thiols that coat the cluster. Overall all these local changes lead to a global redistribution of the charges in the crystal. To the best of my knowledge, this work presents the first experimental observation of the phenomenon due to a collective behavior in a crystal of nanoclusters as well as in a crystal with more than 1000 atoms in the unit cell

    Structural, Thermodynamic, and Electronic Properties of Mixed Ionic/Electronic Conductor Materials

    Get PDF
    Due to the mainstream CMOS technology facing a rapid approach to the fundamental downscaling limit, beyond CMOS technologies are under active investigation and development with the intention of revolutionizing and sustaining a wide range of applications including sensors, cryptography, neuromorphic and quantum computing, memory, and logic, among others. Resistive switching electronics, for example, are devices that can change their electrical resistance with an applied external field. Despite their simple metal-insulator-metal structure, resistive switching devices exhibit an intricate set of IV characteristics based on the chemical composition of the solid electrolyte that ranges from non-volatile bipolar and non-polar switching to volatile threshold switching (abrupt but reversible change in resistance). This rich variety of electrical responses offer new alternatives to traditional CMOS applications in the areas of RF-signal switching, relaxation oscillators, over-voltage protection, and notably, memory cells and two-terminal non-linear selector devices. With the aim of unraveling the physics behind two of such conduction mechanisms, filamentary and threshold, in electrochemical cells consisting solid mixed ionic-electronic conductor electrolytes, this work focused on using first-principles calculations to characterize the structural, thermodynamic, and electronic properties of copper-doped amorphous silicon dioxide and copper-doped germanium-based glassy chalcogenides. The Cu/a-SiO2 system is a promising candidate for resistive switching memory applications. The conduction mechanism in the low-resistance state is known to be filamentary, that is, a physical metallic filament bridges between the metallic electrodes through the amorphous silica. However, many fundamental materials processes that would aid the design and optimization of this devices, such the shape and size of stable metallic filaments, remain unknown. In the first part of this work, the morphology and diffusion of small copper clusters embedded in amorphous silicon dioxide were characterized by density functional theory calculations. The average formation energy of a single copper ion in the amorphous matrix is found to be 2.4 eV, about 50% lower than in the case of silicon dioxide in its cristobalite or quartz phases. The theoretical predictions show that copper clusters with an equiaxed morphology are always energetically favorable relative to the dissolved copper ions in a-SiO2; hence, stable clusters do not exhibit a critical size. The stochasticity in the atomistic structure of the amorphous silicon dioxide leads to a broad distribution activation energies for diffusion of copper in the matrix, ranging from 0.4 to 1.1 eV. Since ab initio molecular dynamics are prohibitively expensive to simulate the switching process in Cu/a-SiO2 electrochemical metallization cells, a multi-scale simulation approach based on electrochemical dynamics with implicit degrees of freedom and density functional theory was developed to study the electronic evolution during metallic filament formation cells. These simulations suggest that the electronic transport in the low-resistance configuration is attributed to copper derived states belonging to the filament bridging between electrodes. Interestingly, the participation of states derived from intrinsic defects in the amorphous SiO2 around the Fermi energy are negligible and do not contribute to conduction. Unlike the Cu/a-SiO2 system which only exhibits filamentary switching, copper-doped germanium-based glassy chalcogenides show filamentary or threshold type of conduction depending on the chemical composition of the glass and copper concentration. Ab initio molecular dynamics based on density functional theory is used to understand the atomistic origin of the electronic transport in these materials. The theoretical predictions show that glasses containing tellurium tend to favor the formation of copper clusters; hence, these materials exhibit filamentary conduction. Threshold conduction is predicted to be the transport mechanism for glassy sulfides and selenides due to the ability of copper to remain dissolved in the amorphous matrix even at high metal concentration. Furthermore, the charge carrier transport in sulfur and selenium glasses was found to be assisted by defective states derived from chalcogen atoms whose bonds exhibit a polar character. Finally, taking advantage of the van der Waals gap as intercalation sites and crystal order in molybdenum disulfide, a novel mixed ionic-electronic conductor material based on copper and silver intercalation of MoS2 is proposed. The theoretical predictions show that on average, the intercalation energy of copper into MoS2 is 1 eV, while intercalation of silver shows a strong dependence on concentration ranging from 2.2 to 0.75 eV for low and high concentrations, respectively. The activation energy for diffusion of copper and silver intercalated within the van der Waals gap of MoS2 is predicted to be 0.32 and 0.38 eV, respectively, comparable to other superionic conductors. Upon Cu and Ag intercalation, MoS2 undergoes a semiconductor-to-metal transition, where the in-plane and out-of-plane conductances are comparable and exhibit a linear dependence with metal concentration

    Semiempirical Modeling of Reset Transitions in Unipolar Resistive-Switching based Memristors

    No full text
    corecore