708 research outputs found

    A semidefinite program for unbalanced multisection in the stochastic block model

    Full text link
    We propose a semidefinite programming (SDP) algorithm for community detection in the stochastic block model, a popular model for networks with latent community structure. We prove that our algorithm achieves exact recovery of the latent communities, up to the information-theoretic limits determined by Abbe and Sandon (2015). Our result extends prior SDP approaches by allowing for many communities of different sizes. By virtue of a semidefinite approach, our algorithms succeed against a semirandom variant of the stochastic block model, guaranteeing a form of robustness and generalization. We further explore how semirandom models can lend insight into both the strengths and limitations of SDPs in this setting.Comment: 29 page

    The power of sum-of-squares for detecting hidden structures

    Full text link
    We study planted problems---finding hidden structures in random noisy inputs---through the lens of the sum-of-squares semidefinite programming hierarchy (SoS). This family of powerful semidefinite programs has recently yielded many new algorithms for planted problems, often achieving the best known polynomial-time guarantees in terms of accuracy of recovered solutions and robustness to noise. One theme in recent work is the design of spectral algorithms which match the guarantees of SoS algorithms for planted problems. Classical spectral algorithms are often unable to accomplish this: the twist in these new spectral algorithms is the use of spectral structure of matrices whose entries are low-degree polynomials of the input variables. We prove that for a wide class of planted problems, including refuting random constraint satisfaction problems, tensor and sparse PCA, densest-k-subgraph, community detection in stochastic block models, planted clique, and others, eigenvalues of degree-d matrix polynomials are as powerful as SoS semidefinite programs of roughly degree d. For such problems it is therefore always possible to match the guarantees of SoS without solving a large semidefinite program. Using related ideas on SoS algorithms and low-degree matrix polynomials (and inspired by recent work on SoS and the planted clique problem by Barak et al.), we prove new nearly-tight SoS lower bounds for the tensor and sparse principal component analysis problems. Our lower bounds for sparse principal component analysis are the first to suggest that going beyond existing algorithms for this problem may require sub-exponential time

    Community detection in sparse networks via Grothendieck's inequality

    Full text link
    We present a simple and flexible method to prove consistency of semidefinite optimization problems on random graphs. The method is based on Grothendieck's inequality. Unlike the previous uses of this inequality that lead to constant relative accuracy, we achieve any given relative accuracy by leveraging randomness. We illustrate the method with the problem of community detection in sparse networks, those with bounded average degrees. We demonstrate that even in this regime, various simple and natural semidefinite programs can be used to recover the community structure up to an arbitrarily small fraction of misclassified vertices. The method is general; it can be applied to a variety of stochastic models of networks and semidefinite programs.Comment: This is the final version, incorporating the referee's comment

    Phase Transitions in Semidefinite Relaxations

    Full text link
    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family, and are surprisingly well-suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that, when the `statistical noise' is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several `detection thresholds,' as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins, and use non-rigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems.Comment: 71 pages, 24 pdf figure
    • …
    corecore