1,138 research outputs found

    Semidefinite code bounds based on quadruple distances

    Full text link
    Let A(n,d)A(n,d) be the maximum number of 0,10,1 words of length nn, any two having Hamming distance at least dd. We prove A(20,8)=256A(20,8)=256, which implies that the quadruply shortened Golay code is optimal. Moreover, we show A(18,6)≀673A(18,6)\leq 673, A(19,6)≀1237A(19,6)\leq 1237, A(20,6)≀2279A(20,6)\leq 2279, A(23,6)≀13674A(23,6)\leq 13674, A(19,8)≀135A(19,8)\leq 135, A(25,8)≀5421A(25,8)\leq 5421, A(26,8)≀9275A(26,8)\leq 9275, A(21,10)≀47A(21,10)\leq 47, A(22,10)≀84A(22,10)\leq 84, A(24,10)≀268A(24,10)\leq 268, A(25,10)≀466A(25,10)\leq 466, A(26,10)≀836A(26,10)\leq 836, A(27,10)≀1585A(27,10)\leq 1585, A(25,12)≀55A(25,12)\leq 55, and A(26,12)≀96A(26,12)\leq 96. The method is based on the positive semidefiniteness of matrices derived from quadruples of words. This can be put as constraint in a semidefinite program, whose optimum value is an upper bound for A(n,d)A(n,d). The order of the matrices involved is huge. However, the semidefinite program is highly symmetric, by which its feasible region can be restricted to the algebra of matrices invariant under this symmetry. By block diagonalizing this algebra, the order of the matrices will be reduced so as to make the program solvable with semidefinite programming software in the above range of values of nn and dd.Comment: 15 page

    Semidefinite programming, harmonic analysis and coding theory

    Full text link
    These lecture notes where presented as a course of the CIMPA summer school in Manila, July 20-30, 2009, Semidefinite programming in algebraic combinatorics. This version is an update June 2010

    Commutative association schemes

    Full text link
    Association schemes were originally introduced by Bose and his co-workers in the design of statistical experiments. Since that point of inception, the concept has proved useful in the study of group actions, in algebraic graph theory, in algebraic coding theory, and in areas as far afield as knot theory and numerical integration. This branch of the theory, viewed in this collection of surveys as the "commutative case," has seen significant activity in the last few decades. The goal of the present survey is to discuss the most important new developments in several directions, including Gelfand pairs, cometric association schemes, Delsarte Theory, spin models and the semidefinite programming technique. The narrative follows a thread through this list of topics, this being the contrast between combinatorial symmetry and group-theoretic symmetry, culminating in Schrijver's SDP bound for binary codes (based on group actions) and its connection to the Terwilliger algebra (based on combinatorial symmetry). We propose this new role of the Terwilliger algebra in Delsarte Theory as a central topic for future work.Comment: 36 page

    A note on the stability number of an orthogonality graph

    Get PDF
    We consider the orthogonality graph Omega(n) with 2^n vertices corresponding to the 0-1 n-vectors, two vertices adjacent if and only if the Hamming distance between them is n/2. We show that the stability number of Omega(16) is alpha(Omega(16))= 2304, thus proving a conjecture by Galliard. The main tool we employ is a recent semidefinite programming relaxation for minimal distance binary codes due to Schrijver. As well, we give a general condition for Delsarte bound on the (co)cliques in graphs of relations of association schemes to coincide with the ratio bound, and use it to show that for Omega(n) the latter two bounds are equal to 2^n/n.Comment: 10 pages, LaTeX, 1 figure, companion Matlab code. Misc. misprints fixed and references update

    Semidefinite bounds for mixed binary/ternary codes

    Full text link
    For nonnegative integers n2,n3n_2, n_3 and dd, let N(n2,n3,d)N(n_2,n_3,d) denote the maximum cardinality of a code of length n2+n3n_2+n_3, with n2n_2 binary coordinates and n3n_3 ternary coordinates (in this order) and with minimum distance at least dd. For a nonnegative integer kk, let Ck\mathcal{C}_k denote the collection of codes of cardinality at most kk. For D∈CkD \in \mathcal{C}_k, define S(D):={C∈Ck∣DβŠ†C,∣D∣+2∣Cβˆ–Dβˆ£β‰€k}S(D) := \{C \in \mathcal{C}_k \mid D \subseteq C, |D| +2|C\setminus D| \leq k\}. Then N(n2,n3,d)N(n_2,n_3,d) is upper bounded by the maximum value of βˆ‘v∈[2]n2[3]n3x({v})\sum_{v \in [2]^{n_2}[3]^{n_3}}x(\{v\}), where xx is a function Ckβ†’R\mathcal{C}_k \rightarrow \mathbb{R} such that x(βˆ…)=1x(\emptyset) = 1 and x(C)=0x(C) = 0 if CC has minimum distance less than dd, and such that the S(D)Γ—S(D)S(D)\times S(D) matrix (x(CβˆͺCβ€²))C,Cβ€²βˆˆS(D)(x(C\cup C'))_{C,C' \in S(D)} is positive semidefinite for each D∈CkD \in \mathcal{C}_k. By exploiting symmetry, the semidefinite programming problem for the case k=3k=3 is reduced using representation theory. It yields 135135 new upper bounds that are provided in tablesComment: 12 pages; some typos have been fixed. Accepted for publication in Discrete Mathematic
    • …
    corecore