159 research outputs found

    Optimal design of simulation experiments with nearly saturated queues

    Get PDF
    Simulation Models;Interpolation;Queueing Network;Extrapolation

    Optimization flow control -- I: Basic algorithm and convergence

    Get PDF
    We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using a gradient projection algorithm. In this system, sources select transmission rates that maximize their own benefits, utility minus bandwidth cost, and network links adjust bandwidth prices to coordinate the sources' decisions. We allow feedback delays to be different, substantial, and time varying, and links and sources to update at different times and with different frequencies. We provide asynchronous distributed algorithms and prove their convergence in a static environment. We present measurements obtained from a preliminary prototype to illustrate the convergence of the algorithm in a slowly time-varying environment. We discuss its fairness property

    Особенности программной реализации численно-аналитического метода расчёта моделей нестационарных систем обслуживания

    Get PDF
    A numerical-analytical method for non-stationary queueing systems models computation is presented. The solution of Chapman—Kolmogorov equations is found in the analytical form. The algorithm and its practical implementation with Java language are discussed. Computation time and results precision for the presented method and the Runge—Kutta type method used in Matlab are compared.В статье описывается численно-аналитический метод расчёта моделей нестационарных систем обслуживания. Находится решение системы уравнений Чепмена — Колмогорова в аналитическом виде. Приводится алгоритм построения решения и особенности его программной реализации на языке Java. Также приводятся результаты сравнения времени работы и точности выходных данных метода со временем работы и точностью выходных данных численного метода типа Рунге — Кутты, который используется в Matlab для решения аналогичных задач

    LCCC focus period and workshop on Dynamics and Control in Networks

    Get PDF

    Simple and explicit bounds for multi-server queues with 1/(1ρ)1/(1 - \rho) (and sometimes better) scaling

    Full text link
    We consider the FCFS GI/GI/nGI/GI/n queue, and prove the first simple and explicit bounds that scale as 11ρ\frac{1}{1-\rho} (and sometimes better). Here ρ\rho denotes the corresponding traffic intensity. Conceptually, our results can be viewed as a multi-server analogue of Kingman's bound. Our main results are bounds for the tail of the steady-state queue length and the steady-state probability of delay. The strength of our bounds (e.g. in the form of tail decay rate) is a function of how many moments of the inter-arrival and service distributions are assumed finite. More formally, suppose that the inter-arrival and service times (distributed as random variables AA and SS respectively) have finite rrth moment for some r>2.r > 2. Let μA\mu_A (respectively μS\mu_S) denote 1E[A]\frac{1}{\mathbb{E}[A]} (respectively 1E[S]\frac{1}{\mathbb{E}[S]}). Then our bounds (also for higher moments) are simple and explicit functions of E[(AμA)r],E[(SμS)r],r\mathbb{E}\big[(A \mu_A)^r\big], \mathbb{E}\big[(S \mu_S)^r\big], r, and 11ρ\frac{1}{1-\rho} only. Our bounds scale gracefully even when the number of servers grows large and the traffic intensity converges to unity simultaneously, as in the Halfin-Whitt scaling regime. Some of our bounds scale better than 11ρ\frac{1}{1-\rho} in certain asymptotic regimes. More precisely, they scale as 11ρ\frac{1}{1-\rho} multiplied by an inverse polynomial in n(1ρ)2.n(1 - \rho)^2. These results formalize the intuition that bounds should be tighter in light traffic as well as certain heavy-traffic regimes (e.g. with ρ\rho fixed and nn large). In these same asymptotic regimes we also prove bounds for the tail of the steady-state number in service. Our main proofs proceed by explicitly analyzing the bounding process which arises in the stochastic comparison bounds of amarnik and Goldberg for multi-server queues. Along the way we derive several novel results for suprema of random walks and pooled renewal processes which may be of independent interest. We also prove several additional bounds using drift arguments (which have much smaller pre-factors), and make several conjectures which would imply further related bounds and generalizations

    Tractable stochastic analysis in high dimensions via robust optimization

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 201-207).Modern probability theory, whose foundation is based on the axioms set forth by Kolmogorov, is currently the major tool for performance analysis in stochastic systems. While it offers insights in understanding such systems, probability theory, in contrast to optimization, has not been developed with computational tractability as an objective when the dimension increases. Correspondingly, some of its major areas of application remain unsolved when the underlying systems become multidimensional: Queueing networks, auction design in multi-item, multi-bidder auctions, network information theory, pricing multi-dimensional financial contracts, among others. We propose a new approach to analyze stochastic systems based on robust optimization. The key idea is to replace the Kolmogorov axioms and the concept of random variables as primitives of probability theory, with uncertainty sets that are derived from some of the asymptotic implications of probability theory like the central limit theorem. In addition, we observe that several desired system properties such as incentive compatibility and individual rationality in auction design and correct decoding in information theory are naturally expressed in the language of robust optimization. In this way, the performance analysis questions become highly structured optimization problems (linear, semidefinite, mixed integer) for which there exist efficient, practical algorithms that are capable of solving problems in high dimensions. We demonstrate that the proposed approach achieves computationally tractable methods for (a) analyzing queueing networks (Chapter 2) (b) designing multi-item, multi-bidder auctions with budget constraints, (Chapter 3) (c) characterizing the capacity region and designing optimal coding and decoding methods in multi-sender, multi-receiver communication channels (Chapter 4).by Chaithanya Bandi.Ph.D
    corecore