23 research outputs found

    A Unified Precoding Scheme for Generalized Spatial Modulation

    Full text link
    © 1972-2012 IEEE. Generalized spatial modulation (GSM) activates Nt (1 ≤ nt < Nt) available transmit antennas, and information is conveyed through nt modulated symbols as well as the index of the nt activated antennas. GSM strikes an attractive tradeoff between spectrum efficiency and energy efficiency. Linear precoding that exploits channel state information at the transmitter enhances the system error performance. For GSM with nt=1 (the traditional SM), the existing precoding methods suffer from high computational complexity. On the other hand, GSM precoding for nt ≥ 2 is not thoroughly investigated in the open literature. In this paper, we develop a unified precoding design for GSM systems, which universally works for all nt values. Based on the maximum minimum Euclidean distance criterion, we find that the precoding design can be formulated as a large-scale nonconvex quadratically constrained quadratic program problem. Then, we transform this challenging problem into a sequence of unconstrained subproblems by leveraging augmented Lagrangian and dual ascent techniques. These subproblems can be solved in an iterative manner efficiently. Numerical results show that the proposed method can substantially improve the system error performance relative to the GSM without precoding and features extremely fast convergence rate with a very low computational complexity

    CI-Based One-Bit Precoding for Multiuser Downlink Massive MIMO Systems with PSK Modulation: A Negative â„“1\ell_1 Penalty Approach

    Full text link
    In this paper, we consider the one-bit precoding problem for the multiuser downlink massive multiple-input multiple-output (MIMO) system with phase shift keying (PSK) modulation and focus on the celebrated constructive interference (CI)-based problem formulation. We first establish the NP-hardness of the problem (even in the single-user case), which reveals the intrinsic difficulty of globally solving the problem. Then, we propose a novel negative â„“1\ell_1 penalty model for the considered problem, which penalizes the one-bit constraint into the objective with a negative â„“1\ell_1-norm term, and show the equivalence between (global and local) solutions of the original problem and the penalty problem when the penalty parameter is sufficiently large. We further transform the penalty model into an equivalent min-max problem and propose an efficient alternating optimization (AO) algorithm for solving it. The AO algorithm enjoys low per-iteration complexity and is guaranteed to converge to a stationary point of the min-max problem and a local minimizer of the penalty problem. To further reduce the computational cost, we also propose a low-complexity implementation of the AO algorithm, where the values of the variables will be fixed in later iterations once they satisfy the one-bit constraint. Numerical results show that, compared against the state-of-the-art CI-based algorithms, both of the proposed algorithms generally achieve better bit-error-rate (BER) performance with lower computational cost, especially when the problem is difficult (e.g., high-order modulations, large number of antennas, or high user-antenna ratio).Comment: 13 pages, 8 figures, submitted for possible publication. arXiv admin note: text overlap with arXiv:2110.0476

    Precoding and Beamforming Design for Intelligent Reconfigurable Surface-Aided Hybrid Secure Spatial Modulation

    Full text link
    Intelligent reflecting surface (IRS) is an emerging technology for wireless communication composed of a large number of low-cost passive devices with reconfigurable parameters, which can reflect signals with a certain phase shift and is capable of building programmable communication environment. In this paper, to avoid the high hardware cost and energy consumption in spatial modulation (SM), an IRS-aided hybrid secure SM (SSM) system with a hybrid precoder is proposed. To improve the security performance, we formulate an optimization problem to maximize the secrecy rate (SR) by jointly optimizing the beamforming at IRS and hybrid precoding at the transmitter. Considering that the SR has no closed form expression, an approximate SR (ASR) expression is derived as the objective function. To improve the SR performance, three IRS beamforming methods, called IRS alternating direction method of multipliers (IRS-ADMM), IRS block coordinate ascend (IRS-BCA) and IRS semi-definite relaxation (IRS-SDR), are proposed. As for the hybrid precoding design, approximated secrecy rate-successive convex approximation (ASR-SCA) method and cut-off rate-gradient ascend (COR-GA) method are proposed. Simulation results demonstrate that the proposed IRS-SDR and IRS-ADMM beamformers harvest substantial SR performance gains over IRS-BCA. Particularly, the proposed IRS-ADMM and IRS-BCA are of low-complexity at the expense of a little performance loss compared with IRS-SDR. For hybrid precoding, the proposed ASR-SCA performs better than COR-GA in the high transmit power region.Comment: 14pages,8figure

    On Linear Transmission Systems

    Get PDF
    This thesis is divided into two parts. Part I analyzes the information rate of single antenna, single carrier linear modulation systems. The information rate of a system is the maximum number of bits that can be transmitted during a channel usage, and is achieved by Gaussian symbols. It depends on the underlying pulse shape in a linear modulated signal and also the signaling rate, the rate at which the Gaussian symbols are transmitted. The object in Part I is to study the impact of both the signaling rate and the pulse shape on the information rate. Part II of the thesis is devoted to multiple antenna systems (MIMO), and more specifically to linear precoders for MIMO channels. Linear precoding is a practical scheme for improving the performance of a MIMO system, and has been studied intensively during the last four decades. In practical applications, the symbols to be transmitted are taken from a discrete alphabet, such as quadrature amplitude modulation (QAM), and it is of interest to find the optimal linear precoder for a certain performance measure of the MIMO channel. The design problem depends on the particular performance measure and the receiver structure. The main difficulty in finding the optimal precoders is the discrete nature of the problem, and mostly suboptimal solutions are proposed. The problem has been well investigated when linear receivers are employed, for which optimal precoders were found for many different performance measures. However, in the case of the optimal maximum likelihood (ML) receiver, only suboptimal constructions have been possible so far. Part II starts by proposing new novel, low complexity, suboptimal precoders, which provide a low bit error rate (BER) at the receiver. Later, an iterative optimization method is developed, which produces precoders improving upon the best known ones in the literature. The resulting precoders turn out to exhibit a certain structure, which is then analyzed and proved to be optimal for large alphabets

    Transmitter Optimization Techniques for Physical Layer Security

    Get PDF
    Information security is one of the most critical issues in wireless networks as the signals transmitted through wireless medium are more vulnerable for interception. Although the existing conventional security techniques are proven to be safe, the broadcast nature of wireless communications introduces different challenges in terms of key exchange and distributions. As a result, information theoretic physical layer security has been proposed to complement the conventional security techniques for enhancing security in wireless transmissions. On the other hand, the rapid growth of data rates introduces different challenges on power limited mobile devices in terms of energy requirements. Recently, research work on wireless power transfer claimed that it has been considered as a potential technique to extend the battery lifetime of wireless networks. However, the algorithms developed based on the conventional optimization approaches often require iterative techniques, which poses challenges for real-time processing. To meet the demanding requirements of future ultra-low latency and reliable networks, neural network (NN) based approach can be employed to determine the resource allocations in wireless communications. This thesis developed different transmission strategies for secure transmission in wireless communications. Firstly, transmitter designs are focused in a multiple-input single-output simultaneous wireless information and power transfer system with unknown eavesdroppers. To improve the performance of physical layer security and the harvested energy, artificial noise is incorporated into the network to mask the secret information between the legitimate terminals. Then, different secrecy energy efficiency designs are considered for a MISO underlay cognitive radio network, in the presence of an energy harvesting receiver. In particular, these designs are developed with different channel state information assumptions at the transmitter. Finally, two different power allocation designs are investigated for a cognitive radio network to maximize the secrecy rate of the secondary receiver: conventional convex optimization framework and NN based algorithm

    Application of integer quadratic programming in detection of high-dimensional wireless systems

    Get PDF
    High-dimensional wireless systems have recently generated a great deal of interest due to their ability to accommodate increasing demands for high transmission data rates with high communication reliability. Examples of such large-scale systems include single-input, single-output symbol spread OFDM system, large-scale single-user multi-input multi-output (MIMO) OFDM systems, and large-scale multiuser MIMO systems. In these systems, the number of symbols required to be jointly detected at the receiver is relatively large. The challenge with the practical realization of these systems is to design a detection scheme that provides high communication reliability with reasonable computational complexity, even as the number of simultaneously transmitted independent communication signals becomes very large.^ Most of the optimal or near-optimal detection techniques that have been proposed in the literature of relatively low-dimensional wireless systems, such as MIMO systems in which number of antennas is less than 10, become problematic for high-dimensional detection problems. That is, their performance degrades or the computational complexity becomes prohibitive, especially when higher-order QAM constellations are employed.^ In the first part of this thesis, we propose a near-optimal detection technique which offers a flexible trade-off between complexity and performance. The proposed technique formulates the detection problem in terms of Integer Quadratic Programming (IQP), which is then solved through a controlled Branch and Bound (BB) search tree algorithm. In addition to providing good performance, an important feature of this approach is that its computational complexity remains roughly the same even as we increase the constellation order from 4-QAM to 256-QAM. The performance of the proposed algorithm is investigated for both symbol spread OFDM systems and large-scale MIMO systems with both frequency selective and at fading channels.^ The second part of this work focuses on a reduced complexity version of IQP referred to as relaxed quadratic programming (QP). In particular, QP is used to reformulate two widely used detection schemes for MIMO OFDM: (1) Successive Interference Cancellation (SIC) and (2) Iterative Detecting and Decoding (IDD). First, SIC-based algorithms are derived via a QP formulation in contrast to using a linear MMSE detector at each stage. The resulting QP-SIC algorithms offer lower computational complexity than the SIC schemes that employ linear MMSE at each stage, especially when the dimension of the received signal vector is high. Three versions of QP-SIC are proposed based on various trade-offs between complexity and receiver performance; each of the three QP-SIC algorithms outperforms existing SIC techniques. Second, IDD-based algorithms are developed using a QP detector. We show how the soft information, in terms of the Log Likelihood Ratio (LLR), can be extracted from the QP detector. Further, the procedure for incorporating the a-priori information that is passed from the channel decoder to the QP detector is developed. Simulation results are presented demonstrating that the use of QP in IDD offers improved performance at the cost of a reasonable increase in complexity compared to linear detectors

    Sparsity-Based Algorithms for Line Spectral Estimation

    Get PDF
    corecore