233 research outputs found

    Efficient Semidefinite Branch-and-Cut for MAP-MRF Inference

    Full text link
    We propose a Branch-and-Cut (B&C) method for solving general MAP-MRF inference problems. The core of our method is a very efficient bounding procedure, which combines scalable semidefinite programming (SDP) and a cutting-plane method for seeking violated constraints. In order to further speed up the computation, several strategies have been exploited, including model reduction, warm start and removal of inactive constraints. We analyze the performance of the proposed method under different settings, and demonstrate that our method either outperforms or performs on par with state-of-the-art approaches. Especially when the connectivities are dense or when the relative magnitudes of the unary costs are low, we achieve the best reported results. Experiments show that the proposed algorithm achieves better approximation than the state-of-the-art methods within a variety of time budgets on challenging non-submodular MAP-MRF inference problems.Comment: 21 page

    Scalable Semidefinite Relaxation for Maximum A Posterior Estimation

    Full text link
    Maximum a posteriori (MAP) inference over discrete Markov random fields is a fundamental task spanning a wide spectrum of real-world applications, which is known to be NP-hard for general graphs. In this paper, we propose a novel semidefinite relaxation formulation (referred to as SDR) to estimate the MAP assignment. Algorithmically, we develop an accelerated variant of the alternating direction method of multipliers (referred to as SDPAD-LR) that can effectively exploit the special structure of the new relaxation. Encouragingly, the proposed procedure allows solving SDR for large-scale problems, e.g., problems on a grid graph comprising hundreds of thousands of variables with multiple states per node. Compared with prior SDP solvers, SDPAD-LR is capable of attaining comparable accuracy while exhibiting remarkably improved scalability, in contrast to the commonly held belief that semidefinite relaxation can only been applied on small-scale MRF problems. We have evaluated the performance of SDR on various benchmark datasets including OPENGM2 and PIC in terms of both the quality of the solutions and computation time. Experimental results demonstrate that for a broad class of problems, SDPAD-LR outperforms state-of-the-art algorithms in producing better MAP assignment in an efficient manner.Comment: accepted to International Conference on Machine Learning (ICML 2014

    Large-scale Binary Quadratic Optimization Using Semidefinite Relaxation and Applications

    Full text link
    In computer vision, many problems such as image segmentation, pixel labelling, and scene parsing can be formulated as binary quadratic programs (BQPs). For submodular problems, cuts based methods can be employed to efficiently solve large-scale problems. However, general nonsubmodular problems are significantly more challenging to solve. Finding a solution when the problem is of large size to be of practical interest, however, typically requires relaxation. Two standard relaxation methods are widely used for solving general BQPs--spectral methods and semidefinite programming (SDP), each with their own advantages and disadvantages. Spectral relaxation is simple and easy to implement, but its bound is loose. Semidefinite relaxation has a tighter bound, but its computational complexity is high, especially for large scale problems. In this work, we present a new SDP formulation for BQPs, with two desirable properties. First, it has a similar relaxation bound to conventional SDP formulations. Second, compared with conventional SDP methods, the new SDP formulation leads to a significantly more efficient and scalable dual optimization approach, which has the same degree of complexity as spectral methods. We then propose two solvers, namely, quasi-Newton and smoothing Newton methods, for the dual problem. Both of them are significantly more efficiently than standard interior-point methods. In practice, the smoothing Newton solver is faster than the quasi-Newton solver for dense or medium-sized problems, while the quasi-Newton solver is preferable for large sparse/structured problems. Our experiments on a few computer vision applications including clustering, image segmentation, co-segmentation and registration show the potential of our SDP formulation for solving large-scale BQPs.Comment: Fixed some typos. 18 pages. Accepted to IEEE Transactions on Pattern Analysis and Machine Intelligenc

    Consistent Second-Order Conic Integer Programming for Learning Bayesian Networks

    Full text link
    Bayesian Networks (BNs) represent conditional probability relations among a set of random variables (nodes) in the form of a directed acyclic graph (DAG), and have found diverse applications in knowledge discovery. We study the problem of learning the sparse DAG structure of a BN from continuous observational data. The central problem can be modeled as a mixed-integer program with an objective function composed of a convex quadratic loss function and a regularization penalty subject to linear constraints. The optimal solution to this mathematical program is known to have desirable statistical properties under certain conditions. However, the state-of-the-art optimization solvers are not able to obtain provably optimal solutions to the existing mathematical formulations for medium-size problems within reasonable computational times. To address this difficulty, we tackle the problem from both computational and statistical perspectives. On the one hand, we propose a concrete early stopping criterion to terminate the branch-and-bound process in order to obtain a near-optimal solution to the mixed-integer program, and establish the consistency of this approximate solution. On the other hand, we improve the existing formulations by replacing the linear "big-MM" constraints that represent the relationship between the continuous and binary indicator variables with second-order conic constraints. Our numerical results demonstrate the effectiveness of the proposed approaches

    Theta Bodies for Polynomial Ideals

    Full text link
    Inspired by a question of Lov\'asz, we introduce a hierarchy of nested semidefinite relaxations of the convex hull of real solutions to an arbitrary polynomial ideal, called theta bodies of the ideal. For the stable set problem in a graph, the first theta body in this hierarchy is exactly Lov\'asz's theta body of the graph. We prove that theta bodies are, up to closure, a version of Lasserre's relaxations for real solutions to ideals, and that they can be computed explicitly using combinatorial moment matrices. Theta bodies provide a new canonical set of semidefinite relaxations for the max cut problem. For vanishing ideals of finite point sets, we give several equivalent characterizations of when the first theta body equals the convex hull of the points. We also determine the structure of the first theta body for all ideals.Comment: 26 pages, 3 figure

    Relax, no need to round: integrality of clustering formulations

    Full text link
    We study exact recovery conditions for convex relaxations of point cloud clustering problems, focusing on two of the most common optimization problems for unsupervised clustering: kk-means and kk-median clustering. Motivations for focusing on convex relaxations are: (a) they come with a certificate of optimality, and (b) they are generic tools which are relatively parameter-free, not tailored to specific assumptions over the input. More precisely, we consider the distributional setting where there are kk clusters in Rm\mathbb{R}^m and data from each cluster consists of nn points sampled from a symmetric distribution within a ball of unit radius. We ask: what is the minimal separation distance between cluster centers needed for convex relaxations to exactly recover these kk clusters as the optimal integral solution? For the kk-median linear programming relaxation we show a tight bound: exact recovery is obtained given arbitrarily small pairwise separation ϵ>0\epsilon > 0 between the balls. In other words, the pairwise center separation is Δ>2+ϵ\Delta > 2+\epsilon. Under the same distributional model, the kk-means LP relaxation fails to recover such clusters at separation as large as Δ=4\Delta = 4. Yet, if we enforce PSD constraints on the kk-means LP, we get exact cluster recovery at center separation Δ>22(1+1/m)\Delta > 2\sqrt2(1+\sqrt{1/m}). In contrast, common heuristics such as Lloyd's algorithm (a.k.a. the kk-means algorithm) can fail to recover clusters in this setting; even with arbitrarily large cluster separation, k-means++ with overseeding by any constant factor fails with high probability at exact cluster recovery. To complement the theoretical analysis, we provide an experimental study of the recovery guarantees for these various methods, and discuss several open problems which these experiments suggest.Comment: 30 pages, ITCS 201

    A Riemannian low-rank method for optimization over semidefinite matrices with block-diagonal constraints

    Get PDF
    We propose a new algorithm to solve optimization problems of the form minf(X)\min f(X) for a smooth function ff under the constraints that XX is positive semidefinite and the diagonal blocks of XX are small identity matrices. Such problems often arise as the result of relaxing a rank constraint (lifting). In particular, many estimation tasks involving phases, rotations, orthonormal bases or permutations fit in this framework, and so do certain relaxations of combinatorial problems such as Max-Cut. The proposed algorithm exploits the facts that (1) such formulations admit low-rank solutions, and (2) their rank-restricted versions are smooth optimization problems on a Riemannian manifold. Combining insights from both the Riemannian and the convex geometries of the problem, we characterize when second-order critical points of the smooth problem reveal KKT points of the semidefinite problem. We compare against state of the art, mature software and find that, on certain interesting problem instances, what we call the staircase method is orders of magnitude faster, is more accurate and scales better. Code is available.Comment: 37 pages, 3 figure
    corecore