212 research outputs found

    Mini-Workshop: Applied Koopmanism

    Get PDF
    Koopman and Perron–Frobenius operators are linear operators that encapsulate dynamics of nonlinear dynamical systems without loss of information. This is accomplished by embedding the dynamics into a larger infinite-dimensional space where the focus of study is shifted from trajectory curves to measurement functions evaluated along trajectories and densities of trajectories evolving in time. Operator-theoretic approach to dynamics shares many features with an optimization technique: the Lasserre moment–sums-of-squares (SOS) hierarchies, which was developed for numerically solving non-convex optimization problems with semialgebraic data. This technique embeds the optimization problem into a larger primal semidefinite programming (SDP) problem consisting of measure optimization over the set of globally optimal solutions, where measures are manipulated through their truncated moment sequences. The dual SDP problem uses SOS representations to certify bounds on the global optimum. This workshop highlighted the common threads between the operator-theoretic dynamical systems and moment–SOS hierarchies in optimization and explored the future directions where the synergy of the two techniques could yield results in fluid dynamics, control theory, optimization, and spectral theory

    Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals

    Get PDF
    Among the fastest methods for solving stiff PDE are exponential integrators, which require the evaluation of f(A)f(A), where AA is a negative definite matrix and ff is the exponential function or one of the related ``φ\varphi functions'' such as φ1(z)=(ez1)/z\varphi_1(z) = (e^z-1)/z. Building on previous work by Trefethen and Gutknecht, Gonchar and Rakhmanov, and Lu, we propose two methods for the fast evaluation of f(A)f(A) that are especially useful when shifted systems (A+zI)x=b(A+zI)x=b can be solved efficiently, e.g. by a sparse direct solver. The first method method is based on best rational approximations to ff on the negative real axis computed via the Carathéodory-Fejér procedure, and we conjecture that the accuracy scales as (9.28903)2n(9.28903\dots)^{-2n}, where nn is the number of complex matrix solves. In particular, three matrix solves suffice to evaluate f(A)f(A) to approximately six digits of accuracy. The second method is an application of the trapezoid rule on a Talbot-type contour

    Some approximation schemes in polynomial optimization

    Get PDF
    Cette thèse est dédiée à l'étude de la hiérarchie moments-sommes-de-carrés, une famille de problèmes de programmation semi-définie en optimisation polynomiale, couramment appelée hiérarchie de Lasserre. Nous examinons différents aspects de ses propriétés et applications. Comme application de la hiérarchie, nous approchons certains objets potentiellement compliqués, comme l'abscisse polynomiale et les plans d'expérience optimaux sur des domaines semi-algébriques. L'application de la hiérarchie de Lasserre produit des approximations par des polynômes de degré fixé et donc de complexité bornée. En ce qui concerne la complexité de la hiérarchie elle-même, nous en construisons une modification pour laquelle un taux de convergence amélioré peut être prouvé. Un concept essentiel de la hiérarchie est l'utilisation des modules quadratiques et de leurs duaux pour appréhender de manière flexible le cône des polynômes positifs et le cône des moments. Nous poursuivons cette idée pour construire des approximations étroites d'ensembles semi-algébriques à l'aide de séparateurs polynomiaux.This thesis is dedicated to investigations of the moment-sums-of-squares hierarchy, a family of semidefinite programming problems in polynomial optimization, commonly called the Lasserre hierarchy. We examine different aspects of its properties and purposes. As applications of the hierarchy, we approximate some potentially complicated objects, namely the polynomial abscissa and optimal designs on semialgebraic domains. Applying the Lasserre hierarchy results in approximations by polynomials of fixed degree and hence bounded complexity. With regard to the complexity of the hierarchy itself, we construct a modification of it for which an improved convergence rate can be proved. An essential concept of the hierarchy is to use quadratic modules and their duals as a tractable characterization of the cone of positive polynomials and the moment cone, respectively. We exploit further this idea to construct tight approximations of semialgebraic sets with polynomial separators

    Nonnormality in Lyapunov Equations

    Get PDF
    The singular values of the solution to a Lyapunov equation determine the potential accuracy of the low-rank approximations constructed by iterative methods. Low- rank solutions are more accurate if most of the singular values are small, so a priori bounds that describe coefficient matrix properties that correspond to rapid singular value decay are valuable. Previous bounds take similar forms, all of which weaken (quadratically) as the coefficient matrix departs from normality. Such bounds suggest that the more nonnormal the coefficient matrix becomes, the slower the singular values of the solution will decay. However, simple examples typically exhibit an eventual acceleration of decay if the coefficient becomes very nonnormal. We will show that this principle is universal: decay always improves as departure from normality increases beyond a given threshold, specifically as the numerical range of the coefficient matrix extends farther into the right half-plane. We also give examples showing that similar behavior can occur for general Sylvester equations, though the right-hand side plays a more important role

    Optimization and Applications

    Get PDF
    Proceedings of a workshop devoted to optimization problems, their theory and resolution, and above all applications of them. The topics covered existence and stability of solutions; design, analysis, development and implementation of algorithms; applications in mechanics, telecommunications, medicine, operations research

    Spectral triples for the Sierpinski Gasket

    Full text link
    We construct a family of spectral triples for the Sierpinski Gasket KK. For suitable values of the parameters, we determine the dimensional spectrum and recover the Hausdorff measure of KK in terms of the residue of the volume functional aa\to tr(aDs)(a\,|D|^{-s}) at its abscissa of convergence dDd_D, which coincides with the Hausdorff dimension dHd_H of the fractal. We determine the associated Connes' distance showing that it is bi-Lipschitz equivalent to the distance on KK induced by the Euclidean metric of the plane, and show that the pairing of the associated Fredholm module with (odd) KK-theory is non-trivial. When the parameters belong to a suitable range, the abscissa of convergence δD\delta_D of the energy functional aa\to tr(Ds/2[D,a]2Ds/2)(|D|^{-s/2}|[D,a]|^2\,|D|^{-s/2}) takes the value dE=log(12/5)log2d_E=\frac{\log(12/5)}{\log 2}, which we call energy dimension, and the corresponding residue gives the standard Dirichlet form on KK.Comment: 48 pages, 9 figures. Final version, to appear in J.Funct.Ana

    High-order DG solvers for under-resolved turbulent incompressible flows: A comparison of L2L^2 and HH(div) methods

    Get PDF
    The accurate numerical simulation of turbulent incompressible flows is a challenging topic in computational fluid dynamics. For discretisation methods to be robust in the under-resolved regime, mass conservation as well as energy stability are key ingredients to obtain robust and accurate discretisations. Recently, two approaches have been proposed in the context of high-order discontinuous Galerkin (DG) discretisations that address these aspects differently. On the one hand, standard L2L^2-based DG discretisations enforce mass conservation and energy stability weakly by the use of additional stabilisation terms. On the other hand, pointwise divergence-free H(div)H(\operatorname{div})-conforming approaches ensure exact mass conservation and energy stability by the use of tailored finite element function spaces. The present work raises the question whether and to which extent these two approaches are equivalent when applied to under-resolved turbulent flows. This comparative study highlights similarities and differences of these two approaches. The numerical results emphasise that both discretisation strategies are promising for under-resolved simulations of turbulent flows due to their inherent dissipation mechanisms.Comment: 24 pages, 13 figure
    corecore