12 research outputs found

    Semiblind ML OSTBC-OFDM detection in block fading channels

    Get PDF
    [[abstract]]This paper presents a semiblind maximum-likelihood (ML) detector for the orthogonal space-time block coded orthogonal frequency division multiplexing (OSTBC-OFDM) system. Many existing blind/ semiblind OSTBC-OFDM receivers typically require that the channel is static over a multitude of OSTBC-OFDM blocks. The proposed method is specifically for detection over one OSTBC-OFDM block only, and hence is well suited to block fading channels. The presented identifiability analysis shows that the data can be uniquely identified in a probability one sense by using one pilot code only, in contrast to the pilot-based least-squares channel estimator which requires at least L pilot codes where L is the channel length. Simulation examples are then presented to show the efficacy of the proposed detector.[[fileno]]2030157030006[[department]]電機工程學

    Performance Analysis of MIMO-STBC Systems with Higher Coding Rate Using Adaptive Semiblind Channel Estimation Scheme

    Get PDF
    Semiblind channel estimation method provides the best trade-off in terms of bandwidth overhead, computational complexity and latency. The result after using multiple input multiple output (MIMO) systems shows higher data rate and longer transmit range without any requirement for additional bandwidth or transmit power. This paper presents the detailed analysis of diversity coding techniques using MIMO antenna systems. Different space time block codes (STBCs) schemes have been explored and analyzed with the proposed higher code rate. STBCs with higher code rates have been simulated for different modulation schemes using MATLAB environment and the simulated results have been compared in the semiblind environment which shows the improvement even in highly correlated antenna arrays and is found very close to the condition when channel state information (CSI) is known to the channel

    A new subspace method for blind estimation of selective MIMO-STBC channels

    Get PDF
    In this paper, a new technique for the blind estimation of frequency and/or time-selective multiple-input multiple-output (MIMO) channels under space-time block coding (STBC) transmissions is presented. The proposed method relies on a basis expansion model (BEM) of the MIMO channel, which reduces the number of parameters to be estimated, and includes many practical STBC-based transmission scenarios, such as STBC-orthogonal frequency division multiplexing (OFDM), space-frequency block coding (SFBC), time-reversal STBC, and time-varying STBC encoded systems. Inspired by the unconstrained blind maximum likelihood (UML) decoder, the proposed criterion is a subspace method that efficiently exploits all the information provided by the STBC structure, as well as by the reduced-rank representation of the MIMO channel. The method, which is independent of the specific signal constellation, is able to blindly recover the MIMO channel within a small number of available blocks at the receiver side. In fact, for some particular cases of interest such as orthogonal STBC-OFDM schemes, the proposed technique blindly identifies the channel using just one data block. The complexity of the proposed approach reduces to the solution of a generalized eigenvalue (GEV) problem and its computational cost is linear in the number of sub-channels. An identifiability analysis and some numerical examples illustrating the performance of the proposed algorithm are also providedThis work was supported by the Spanish Government under projects TEC2007-68020-C04-02/TCM (MultiMIMO) and CONSOLIDER-INGENIO 2010 CSD2008-00010 (COMONSENS)

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    OSTBC MIMO Transceiver System For Radio Signal Propagation Challenges Over Irregular Terrain In The Northern Cape, South Africa

    Get PDF
    DissertationThe Northern Cape Province in South Africa, along the Orange River valley, has radio signal reception challenges due to high mountain ranges. The South African Electricity Authority- Eskom has High Voltage assets to monitor in this region. However, due to radio signal reception challenges, it is impossible to monitor their assets via the Supervisory Control and Data Acquisition (SCADA) system. This research aims at developing a Very-High Frequency Orthogonal Space – Time Block Code Multiple-In Multiple-Out (VHF OSTBC MIMO) transceiver simulation model over a Rayleigh fading channel to address the radio communication challenges along the Orange River. The transceiver simulation model will resemble the harsh multipath environment presented by the mountainous terrain in the Northern Cape Province. In environments with irregular terrain such as hills and mountains, the radio signal comes across phenomena such as reflection, refraction, diffraction and scattering. Therefore, the transmitted radio signal undergoes heavy fading and inter-symbol interference (ISI), thus negatively impacting radio link performance. However, the Multiple-input- multiple-output (MIMO) system, which uses multiple antennas both at the transmitter and receiver, takes advantage of this drawback and makes use of the high levels of multi-paths to operate at an optimum. MIMO creates spatial diversity which accounts for better radio link performance, it also yields increased capacity and improves Signal-to-Noise Ratio (SNR) while reducing bit errors. Therefore, MIMO is one of the systems of interest considered best to exploit in this research. Space- time coding (STC) has also been considered because of its ability to increase the reliability of the channel and for its signal decoding simplicity at the receiver. A suitable lower frequency band to use for this research was also investigated. The most attractive characteristic of the low frequency (LF) band that was sought after was its ability to easily diffract over large obstacles than higher frequencies. The Very High Frequency (VHF) band at 70 MHz was found to meet the requirements for the model used. Therefore, this dissertation presents the simulation results of a VHF OSTBC MIMO transceiver model over a Rayleigh fading channel that is typical of the mountainous regions of the Northern Cape Province in South Africa, to help overcome radio signal reception challenges. The following are the different component blocks that made up the model: Random Binary Generator (RBG), Quadrature Phase Shift Key (QPSK) Modulator, Orthogonal Space-Time Block Code (OSTBC) Encoder, Multiple-In Multiple-Out (MIMO) Rayleigh Fading Channel, Added White Gaussian Noise (AWGN), Orthogonal Space-Time Block Code (OSTBC) Decoder and a Quadrature Phase Shift Key (QPSK) Demodulator. The simulation results in this research were generated using the following software packages namely: Matlab/Simulink, Atoll Wireless Network and Pathloss 4 Network. The Matlab/Simulink software was used to determine the bit-error-rate (BER) performance of four different OSTBC MIMO systems, each using different antenna arrays. TheMatlab RF Propagation Tool-SiteViewer was used to generate coverage predictions and receive signal strength (RSS) levels of three VHF OSTBC MIMO systems operating at three different low VHF frequency bands. The Atoll Wireless Network software was used to generate coverage plot predictions. The Pathloss 4 software was used to generate Line of Sight (LoS) predictions. The results have shown that employing the low band VHF OSTBC MIMO transceiver system in irregular terrain environments can greatly improve radio signal reception, data speeds, bandwidth efficiency and link reliability

    Review of Recent Trends

    Get PDF
    This work was partially supported by the European Regional Development Fund (FEDER), through the Regional Operational Programme of Centre (CENTRO 2020) of the Portugal 2020 framework, through projects SOCA (CENTRO-01-0145-FEDER-000010) and ORCIP (CENTRO-01-0145-FEDER-022141). Fernando P. Guiomar acknowledges a fellowship from “la Caixa” Foundation (ID100010434), code LCF/BQ/PR20/11770015. Houda Harkat acknowledges the financial support of the Programmatic Financing of the CTS R&D Unit (UIDP/00066/2020).MIMO-OFDM is a key technology and a strong candidate for 5G telecommunication systems. In the literature, there is no convenient survey study that rounds up all the necessary points to be investigated concerning such systems. The current deeper review paper inspects and interprets the state of the art and addresses several research axes related to MIMO-OFDM systems. Two topics have received special attention: MIMO waveforms and MIMO-OFDM channel estimation. The existing MIMO hardware and software innovations, in addition to the MIMO-OFDM equalization techniques, are discussed concisely. In the literature, only a few authors have discussed the MIMO channel estimation and modeling problems for a variety of MIMO systems. However, to the best of our knowledge, there has been until now no review paper specifically discussing the recent works concerning channel estimation and the equalization process for MIMO-OFDM systems. Hence, the current work focuses on analyzing the recently used algorithms in the field, which could be a rich reference for researchers. Moreover, some research perspectives are identified.publishersversionpublishe

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Spatial Modulation for Generalized MIMO:Challenges, Opportunities, and Implementation

    Get PDF
    A key challenge of future mobile communication research is to strike an attractive compromise between wireless network's area spectral efficiency and energy efficiency. This necessitates a clean-slate approach to wireless system design, embracing the rich body of existing knowledge, especially on multiple-input-multiple-output (MIMO) technologies. This motivates the proposal of an emerging wireless communications concept conceived for single-radio-frequency (RF) large-scale MIMO communications, which is termed as SM. The concept of SM has established itself as a beneficial transmission paradigm, subsuming numerous members of the MIMO system family. The research of SM has reached sufficient maturity to motivate its comparison to state-of-the-art MIMO communications, as well as to inspire its application to other emerging wireless systems such as relay-aided, cooperative, small-cell, optical wireless, and power-efficient communications. Furthermore, it has received sufficient research attention to be implemented in testbeds, and it holds the promise of stimulating further vigorous interdisciplinary research in the years to come. This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM-MIMO. The paper is concluded with the description of the world's first experimental activities in this vibrant research field

    Channel estimation for SISO and MIMO OFDM communications systems.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2010.Telecommunications in the current information age is increasingly relying on the wireless link. This is because wireless communication has made possible a variety of services ranging from voice to data and now to multimedia. Consequently, demand for new wireless capacity is growing rapidly at a very alarming rate. In a bid to cope with challenges of increasing demand for higher data rate, better quality of service, and higher network capacity, there is a migration from Single Input Single Output (SISO) antenna technology to a more promising Multiple Input Multiple Output (MIMO) antenna technology. On the other hand, Orthogonal Frequency Division Multiplexing (OFDM) technique has emerged as a very popular multi-carrier modulation technique to combat the problems associated with physical properties of the wireless channels such as multipath fading, dispersion, and interference. The combination of MIMO technology with OFDM techniques, known as MIMO-OFDM Systems, is considered as a promising solution to enhance the data rate of future broadband wireless communication Systems. This thesis addresses a major area of challenge to both SISO-OFDM and MIMO-OFDM Systems; estimation of accurate channel state information (CSI) in order to make possible coherent detection of the transmitted signal at the receiver end of the system. Hence, the first novel contribution of this thesis is the development of a low complexity adaptive algorithm that is robust against both slow and fast fading channel scenarios, in comparison with other algorithms employed in literature, to implement soft iterative channel estimator for turbo equalizer-based receiver for single antenna communication Systems. Subsequently, a Fast Data Projection Method (FDPM) subspace tracking algorithm is adapted to derive Channel Impulse Response Estimator for implementation of Decision Directed Channel Estimation (DDCE) for Single Input Single Output - Orthogonal Frequency Division Multiplexing (SISO-OFDM) Systems. This is implemented in the context of a more realistic Fractionally Spaced-Channel Impulse Response (FS-CIR) channel model, as against the channel characterized by a Sample Spaced-Channel Impulse Response (SS)-CIR widely assumed by other authors. In addition, a fast convergence Variable Step Size Normalized Least Mean Square (VSSNLMS)-based predictor, with low computational complexity in comparison with others in literatures, is derived for the implementation of the CIR predictor module of the DDCE scheme. A novel iterative receiver structure for the FDPM-based Decision Directed Channel Estimation scheme is also designed for SISO-OFDM Systems. The iterative idea is based on Turbo iterative principle. It is shown that improvement in the performance can be achieved with the iterative DDCE scheme for OFDM system in comparison with the non iterative scheme. Lastly, an iterative receiver structure for FDPM-based DDCE scheme earlier designed for SISO OFDM is extended to MIMO-OFDM Systems. In addition, Variable Step Size Normalized Least Mean Square (VSSNLMS)-based channel transfer function estimator is derived in the context of MIMO Channel for the implementation of the CTF estimator module of the iterative Decision Directed Channel Estimation scheme for MIMO-OFDM Systems in place of linear minimum mean square error (MMSE) criterion. The VSSNLMS-based channel transfer function estimator is found to show improved MSE performance of about -4 MSE (dB) at SNR of 5dB in comparison with linear MMSE-based channel transfer function estimator
    corecore