82 research outputs found

    Semiblind Channel Estimation and Data Detection for OFDM Systems With Optimal Pilot Design

    Get PDF
    This paper considers semiblind channel estimation and data detection for orthogonal frequency-division multiplexing (OFDM) over frequency-selective fading channels. We show that the samples of an OFDM symbol are jointly complex Gaussian distributed, where the mean and covariance are determined by the locations and values of fixed pilot symbols. We exploit this distribution to derive a novel maximum-likelihood (ML) semiblind gradient-descent channel estimator. By exploiting the channel impulse response (CIR) statistics, we also derive a semiblind data detector for both Rayleigh and Ricean fading channels. Furthermore, we develop an enhanced data detector, which uses the estimator error statistics to mitigate the effect of channel estimation errors. Efficient implementation of both the semiblind and the improved data detectors is provided via sphere decoding and nulling-canceling detection. We also derive the Cramér-Rao bound (CRB) and design optimal pilots by minimizing the CRB. Our proposed channel estimator and data detector exhibit high bandwidth efficiency (requiring only a few pilot symbols), achieve the CRB, and also nearly reach the performance of an ideal reference receiver

    A Semi-Blind Pilot-Assisted Channel Estimation Algorithm in OFDM Systems

    Get PDF
    In this paper we study a new semi-blind channel estimation algorithm in orthogonal frequency division multiplexing (OFDM) systems. The proposed scheme is an extension of a recently reported subspace-based blind channel estimation algorithm in cyclic prefix systems which requires very few received blocks. The semi-blind estimation algorithm is devised by using the information obtained both from the blind channel estimation method and a pure pilot-assisted method. The proposed algorithm uses a small amount of received data and can be applied to any types of communication constellations. Simulation results show that, with the same number of pilot samples, the semi-blind algorithm has a clear improvement in system performance over the pure pilot-assisted method. To achieve the same bit- error-rate performance, the proposed semi-blind algorithm uses fewer pilot samples

    A Semiblind Two-Way Training Method for Discriminatory Channel Estimation in MIMO Systems

    Get PDF
    Discriminatory channel estimation (DCE) is a recently developed strategy to enlarge the performance difference between a legitimate receiver (LR) and an unauthorized receiver (UR) in a multiple-input multiple-output (MIMO) wireless system. Specifically, it makes use of properly designed training signals to degrade channel estimation at the UR which in turn limits the UR's eavesdropping capability during data transmission. In this paper, we propose a new two-way training scheme for DCE through exploiting a whitening-rotation (WR) based semiblind method. To characterize the performance of DCE, a closed-form expression of the normalized mean squared error (NMSE) of the channel estimation is derived for both the LR and the UR. Furthermore, the developed analytical results on NMSE are utilized to perform optimal power allocation between the training signal and artificial noise (AN). The advantages of our proposed DCE scheme are two folds: 1) compared to the existing DCE scheme based on the linear minimum mean square error (LMMSE) channel estimator, the proposed scheme adopts a semiblind approach and achieves better DCE performance; 2) the proposed scheme is robust against active eavesdropping with the pilot contamination attack, whereas the existing scheme fails under such an attack.Comment: accepted for publication in IEEE Transactions on Communication

    Joint data detection and channel estimation for OFDM systems

    Get PDF
    We develop new blind and semi-blind data detectors and channel estimators for orthogonal frequency-division multiplexing (OFDM) systems. Our data detectors require minimizing a complex, integer quadratic form in the data vector. The semi-blind detector uses both channel correlation and noise variance. The quadratic for the blind detector suffers from rank deficiency; for this, we give a low-complexity solution. Avoiding a computationally prohibitive exhaustive search, we solve our data detectors using sphere decoding (SD) and V-BLAST and provide simple adaptations of the SD algorithm. We consider how the blind detector performs under mismatch, generalize the basic data detectors to nonunitary constellations, and extend them to systems with pilots and virtual carriers. Simulations show that our data detectors perform well

    Semiblind ML OSTBC-OFDM detection in block fading channels

    Get PDF
    [[abstract]]This paper presents a semiblind maximum-likelihood (ML) detector for the orthogonal space-time block coded orthogonal frequency division multiplexing (OSTBC-OFDM) system. Many existing blind/ semiblind OSTBC-OFDM receivers typically require that the channel is static over a multitude of OSTBC-OFDM blocks. The proposed method is specifically for detection over one OSTBC-OFDM block only, and hence is well suited to block fading channels. The presented identifiability analysis shows that the data can be uniquely identified in a probability one sense by using one pilot code only, in contrast to the pilot-based least-squares channel estimator which requires at least L pilot codes where L is the channel length. Simulation examples are then presented to show the efficacy of the proposed detector.[[fileno]]2030157030006[[department]]電機工程學

    Joint semiblind frequency offset and channel estimation for multiuser MIMO-OFDM uplink

    Get PDF
    A semiblind method is proposed for simultaneously estimating the carrier frequency offsets (CFOs) and channels of an uplink multiuser multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) system. By incorporating the CFOs into the transmitted symbols and channels, the MIMO-OFDM with CFO is remodeled into an MIMO-OFDM without CFO. The known blind method for channel estimation (Zeng and Ng in 2004) (Y. H. Zeng and T. S. Ng, "A semi-blind channel estimation method for multi-user multi-antenna OFDM systems," IEEE Trans. Signal Process., vol. 52, no. 5, pp. 1419-1429, May 2004.) is then directly used for the remodeled system to obtain the shaped channels with an ambiguity matrix. A pilot OFDM block for each user is then exploited to resolve the CFOs and the ambiguity matrix. Two dedicated pilot designs, periodical and consecutive pilots, are discussed. Based on each pilot design and the estimated shaped channels, two methods are proposed to estimate the CFOs. As a result, based on the second-order statistics (SOS) of the received signal and one pilot OFDM block, the CFOs and channels are found simultaneously. Finally, a fast equalization method is given to recover the signals corrupted by the CFOs. © 2007 IEEE.published_or_final_versio

    Estimation and detection techniques for doubly-selective channels in wireless communications

    Get PDF
    A fundamental problem in communications is the estimation of the channel. The signal transmitted through a communications channel undergoes distortions so that it is often received in an unrecognizable form at the receiver. The receiver must expend significant signal processing effort in order to be able to decode the transmit signal from this received signal. This signal processing requires knowledge of how the channel distorts the transmit signal, i.e. channel knowledge. To maintain a reliable link, the channel must be estimated and tracked by the receiver. The estimation of the channel at the receiver often proceeds by transmission of a signal called the 'pilot' which is known a priori to the receiver. The receiver forms its estimate of the transmitted signal based on how this known signal is distorted by the channel, i.e. it estimates the channel from the received signal and the pilot. This design of the pilot is a function of the modulation, the type of training and the channel. [Continues.

    Semi-blind adaptive spatial equalisation for MIMO systems with high-order QAM signalling

    No full text
    This contribution investigates semi-blind adaptive spatial filtering or equalisation for multiple-input multiple-output (MIMO) systems that employ high-throughput quadrature amplitude modulation (QAM) signalling. A minimum number of training symbols, equal to the number of receivers (we assume that the number of transmitters is no more than that of receivers), are first utilized to provide a rough least squares channel estimate of the system's MIMO channel matrix for the initialization of the spatial equalizers' weight vectors. A constant modulus algorithm aided soft decision-directed blind algorithm, originally derived for blind equalization of single-input single-output and single-input multiple-output systems employing high-order QAM signalling, is then extended to adapt the spatial equalizers for MIMO systems. This semi-blind scheme has a low computational complexity, and our simulation results demonstrate that it converges fast to the minimum mean-square-error spatial equalization solution
    corecore