289 research outputs found

    Uniqueness of Nonnegative Tensor Approximations

    Full text link
    We show that for a nonnegative tensor, a best nonnegative rank-r approximation is almost always unique, its best rank-one approximation may always be chosen to be a best nonnegative rank-one approximation, and that the set of nonnegative tensors with non-unique best rank-one approximations form an algebraic hypersurface. We show that the last part holds true more generally for real tensors and thereby determine a polynomial equation so that a real or nonnegative tensor which does not satisfy this equation is guaranteed to have a unique best rank-one approximation. We also establish an analogue for real or nonnegative symmetric tensors. In addition, we prove a singular vector variant of the Perron--Frobenius Theorem for positive tensors and apply it to show that a best nonnegative rank-r approximation of a positive tensor can never be obtained by deflation. As an aside, we verify that the Euclidean distance (ED) discriminants of the Segre variety and the Veronese variety are hypersurfaces and give defining equations of these ED discriminants

    The convex Positivstellensatz in a free algebra

    Get PDF
    Given a monic linear pencil L in g variables let D_L be its positivity domain, i.e., the set of all g-tuples X of symmetric matrices of all sizes making L(X) positive semidefinite. Because L is a monic linear pencil, D_L is convex with interior, and conversely it is known that convex bounded noncommutative semialgebraic sets with interior are all of the form D_L. The main result of this paper establishes a perfect noncommutative Nichtnegativstellensatz on a convex semialgebraic set. Namely, a noncommutative polynomial p is positive semidefinite on D_L if and only if it has a weighted sum of squares representation with optimal degree bounds: p = s^* s + \sum_j f_j^* L f_j, where s, f_j are vectors of noncommutative polynomials of degree no greater than 1/2 deg(p). This noncommutative result contrasts sharply with the commutative setting, where there is no control on the degrees of s, f_j and assuming only p nonnegative, as opposed to p strictly positive, yields a clean Positivstellensatz so seldom that such cases are noteworthy.Comment: 22 page

    New Dependencies of Hierarchies in Polynomial Optimization

    Full text link
    We compare four key hierarchies for solving Constrained Polynomial Optimization Problems (CPOP): Sum of Squares (SOS), Sum of Diagonally Dominant Polynomials (SDSOS), Sum of Nonnegative Circuits (SONC), and the Sherali Adams (SA) hierarchies. We prove a collection of dependencies among these hierarchies both for general CPOPs and for optimization problems on the Boolean hypercube. Key results include for the general case that the SONC and SOS hierarchy are polynomially incomparable, while SDSOS is contained in SONC. A direct consequence is the non-existence of a Putinar-like Positivstellensatz for SDSOS. On the Boolean hypercube, we show as a main result that Schm\"udgen-like versions of the hierarchies SDSOS*, SONC*, and SA* are polynomially equivalent. Moreover, we show that SA* is contained in any Schm\"udgen-like hierarchy that provides a O(n) degree bound.Comment: 26 pages, 4 figure
    • …
    corecore