17,159 research outputs found

    Partially linear additive quantile regression in ultra-high dimension

    Get PDF
    We consider a flexible semiparametric quantile regression model for analyzing high dimensional heterogeneous data. This model has several appealing features: (1) By considering different conditional quantiles, we may obtain a more complete picture of the conditional distribution of a response variable given high dimensional covariates. (2) The sparsity level is allowed to be different at different quantile levels. (3) The partially linear additive structure accommodates nonlinearity and circumvents the curse of dimensionality. (4) It is naturally robust to heavy-tailed distributions. In this paper, we approximate the nonlinear components using B-spline basis functions. We first study estimation under this model when the nonzero components are known in advance and the number of covariates in the linear part diverges. We then investigate a nonconvex penalized estimator for simultaneous variable selection and estimation. We derive its oracle property for a general class of nonconvex penalty functions in the presence of ultra-high dimensional covariates under relaxed conditions. To tackle the challenges of nonsmooth loss function, nonconvex penalty function and the presence of nonlinear components, we combine a recently developed convex-differencing method with modern empirical process techniques. Monte Carlo simulations and an application to a microarray study demonstrate the effectiveness of the proposed method. We also discuss how the method for a single quantile of interest can be extended to simultaneous variable selection and estimation at multiple quantiles.Comment: Published at http://dx.doi.org/10.1214/15-AOS1367 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Estimation and model selection in generalized additive partial linear models for correlated data with diverging number of covariates

    Full text link
    We propose generalized additive partial linear models for complex data which allow one to capture nonlinear patterns of some covariates, in the presence of linear components. The proposed method improves estimation efficiency and increases statistical power for correlated data through incorporating the correlation information. A unique feature of the proposed method is its capability of handling model selection in cases where it is difficult to specify the likelihood function. We derive the quadratic inference function-based estimators for the linear coefficients and the nonparametric functions when the dimension of covariates diverges, and establish asymptotic normality for the linear coefficient estimators and the rates of convergence for the nonparametric functions estimators for both finite and high-dimensional cases. The proposed method and theoretical development are quite challenging since the numbers of linear covariates and nonlinear components both increase as the sample size increases. We also propose a doubly penalized procedure for variable selection which can simultaneously identify nonzero linear and nonparametric components, and which has an asymptotic oracle property. Extensive Monte Carlo studies have been conducted and show that the proposed procedure works effectively even with moderate sample sizes. A pharmacokinetics study on renal cancer data is illustrated using the proposed method.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1194 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Variable selection in measurement error models

    Full text link
    Measurement error data or errors-in-variable data have been collected in many studies. Natural criterion functions are often unavailable for general functional measurement error models due to the lack of information on the distribution of the unobservable covariates. Typically, the parameter estimation is via solving estimating equations. In addition, the construction of such estimating equations routinely requires solving integral equations, hence the computation is often much more intensive compared with ordinary regression models. Because of these difficulties, traditional best subset variable selection procedures are not applicable, and in the measurement error model context, variable selection remains an unsolved issue. In this paper, we develop a framework for variable selection in measurement error models via penalized estimating equations. We first propose a class of selection procedures for general parametric measurement error models and for general semi-parametric measurement error models, and study the asymptotic properties of the proposed procedures. Then, under certain regularity conditions and with a properly chosen regularization parameter, we demonstrate that the proposed procedure performs as well as an oracle procedure. We assess the finite sample performance via Monte Carlo simulation studies and illustrate the proposed methodology through the empirical analysis of a familiar data set.Comment: Published in at http://dx.doi.org/10.3150/09-BEJ205 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Variable selection in semiparametric regression modeling

    Full text link
    In this paper, we are concerned with how to select significant variables in semiparametric modeling. Variable selection for semiparametric regression models consists of two components: model selection for nonparametric components and selection of significant variables for the parametric portion. Thus, semiparametric variable selection is much more challenging than parametric variable selection (e.g., linear and generalized linear models) because traditional variable selection procedures including stepwise regression and the best subset selection now require separate model selection for the nonparametric components for each submodel. This leads to a very heavy computational burden. In this paper, we propose a class of variable selection procedures for semiparametric regression models using nonconcave penalized likelihood. We establish the rate of convergence of the resulting estimate. With proper choices of penalty functions and regularization parameters, we show the asymptotic normality of the resulting estimate and further demonstrate that the proposed procedures perform as well as an oracle procedure. A semiparametric generalized likelihood ratio test is proposed to select significant variables in the nonparametric component. We investigate the asymptotic behavior of the proposed test and demonstrate that its limiting null distribution follows a chi-square distribution which is independent of the nuisance parameters. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedures.Comment: Published in at http://dx.doi.org/10.1214/009053607000000604 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Cosmological Horizon Modes and Linear Response in de Sitter Spacetime

    Get PDF
    Linearized fluctuations of quantized matter fields and the spacetime geometry around de Sitter space are considered in the case that the matter fields are conformally invariant. Taking the unperturbed state of the matter to be the de Sitter invariant Bunch-Davies state, the linear variation of the stress tensor about its self-consistent mean value serves as a source for fluctuations in the geometry through the semi-classical Einstein equations. This linear response framework is used to investigate both the importance of quantum backreaction and the validity of the semi-classical approximation in cosmology. The full variation of the stress tensor, delta T^a_b contains two kinds of terms: (1) those that depend explicitly upon the linearized metric variation delta g_{cd} through the [T^a_b, T^{cd}] causal response function; and (2) state dependent variations, independent of delta g_{cd}. For perturbations of the first kind, the criterion for the validity of the semi-classical approximation in de Sitter space is satisfied for fluctuations on all scales well below the Planck scale. The perturbations of the second kind contain additional massless scalar degrees of freedom associated with changes of state of the fields on the cosmological horizon scale. These scalar degrees of freedom arise necessarily from the local auxiliary field form of the effective action associated with the trace anomaly, are potentially large on the horizon scale, and therefore can lead to substantial non-linear quantum backreaction effects in cosmology.Comment: 62 pages, 4 figures v.2 is amended to match the published version in Phys. Rev. D: Eqs. (6.13)-(6.14) for the quadratic action added, two references added, several minor typos correcte
    • …
    corecore