1,252 research outputs found

    Feature Selection: A Data Perspective

    Full text link
    Feature selection, as a data preprocessing strategy, has been proven to be effective and efficient in preparing data (especially high-dimensional data) for various data mining and machine learning problems. The objectives of feature selection include: building simpler and more comprehensible models, improving data mining performance, and preparing clean, understandable data. The recent proliferation of big data has presented some substantial challenges and opportunities to feature selection. In this survey, we provide a comprehensive and structured overview of recent advances in feature selection research. Motivated by current challenges and opportunities in the era of big data, we revisit feature selection research from a data perspective and review representative feature selection algorithms for conventional data, structured data, heterogeneous data and streaming data. Methodologically, to emphasize the differences and similarities of most existing feature selection algorithms for conventional data, we categorize them into four main groups: similarity based, information theoretical based, sparse learning based and statistical based methods. To facilitate and promote the research in this community, we also present an open-source feature selection repository that consists of most of the popular feature selection algorithms (\url{http://featureselection.asu.edu/}). Also, we use it as an example to show how to evaluate feature selection algorithms. At the end of the survey, we present a discussion about some open problems and challenges that require more attention in future research

    Semi-supervised Ranking Pursuit

    Full text link
    We propose a novel sparse preference learning/ranking algorithm. Our algorithm approximates the true utility function by a weighted sum of basis functions using the squared loss on pairs of data points, and is a generalization of the kernel matching pursuit method. It can operate both in a supervised and a semi-supervised setting and allows efficient search for multiple, near-optimal solutions. Furthermore, we describe the extension of the algorithm suitable for combined ranking and regression tasks. In our experiments we demonstrate that the proposed algorithm outperforms several state-of-the-art learning methods when taking into account unlabeled data and performs comparably in a supervised learning scenario, while providing sparser solutions

    Robust Sparse Coding via Self-Paced Learning

    Full text link
    Sparse coding (SC) is attracting more and more attention due to its comprehensive theoretical studies and its excellent performance in many signal processing applications. However, most existing sparse coding algorithms are nonconvex and are thus prone to becoming stuck into bad local minima, especially when there are outliers and noisy data. To enhance the learning robustness, in this paper, we propose a unified framework named Self-Paced Sparse Coding (SPSC), which gradually include matrix elements into SC learning from easy to complex. We also generalize the self-paced learning schema into different levels of dynamic selection on samples, features and elements respectively. Experimental results on real-world data demonstrate the efficacy of the proposed algorithms.Comment: submitted to AAAI201

    Hypergraph p-Laplacian Regularization for Remote Sensing Image Recognition

    Full text link
    It is of great importance to preserve locality and similarity information in semi-supervised learning (SSL) based applications. Graph based SSL and manifold regularization based SSL including Laplacian regularization (LapR) and Hypergraph Laplacian regularization (HLapR) are representative SSL methods and have achieved prominent performance by exploiting the relationship of sample distribution. However, it is still a great challenge to exactly explore and exploit the local structure of the data distribution. In this paper, we present an effect and effective approximation algorithm of Hypergraph p-Laplacian and then propose Hypergraph p-Laplacian regularization (HpLapR) to preserve the geometry of the probability distribution. In particular, p-Laplacian is a nonlinear generalization of the standard graph Laplacian and Hypergraph is a generalization of a standard graph. Therefore, the proposed HpLapR provides more potential to exploiting the local structure preserving. We apply HpLapR to logistic regression and conduct the implementations for remote sensing image recognition. We compare the proposed HpLapR to several popular manifold regularization based SSL methods including LapR, HLapR and HpLapR on UC-Merced dataset. The experimental results demonstrate the superiority of the proposed HpLapR.Comment: 9 pages, 6 figure

    Unsupervised Feature Selection via Multi-step Markov Transition Probability

    Full text link
    Feature selection is a widely used dimension reduction technique to select feature subsets because of its interpretability. Many methods have been proposed and achieved good results, in which the relationships between adjacent data points are mainly concerned. But the possible associations between data pairs that are may not adjacent are always neglected. Different from previous methods, we propose a novel and very simple approach for unsupervised feature selection, named MMFS (Multi-step Markov transition probability for Feature Selection). The idea is using multi-step Markov transition probability to describe the relation between any data pair. Two ways from the positive and negative viewpoints are employed respectively to keep the data structure after feature selection. From the positive viewpoint, the maximum transition probability that can be reached in a certain number of steps is used to describe the relation between two points. Then, the features which can keep the compact data structure are selected. From the viewpoint of negative, the minimum transition probability that can be reached in a certain number of steps is used to describe the relation between two points. On the contrary, the features that least maintain the loose data structure are selected. And the two ways can also be combined. Thus three algorithms are proposed. Our main contributions are a novel feature section approach which uses multi-step transition probability to characterize the data structure, and three algorithms proposed from the positive and negative aspects for keeping data structure. The performance of our approach is compared with the state-of-the-art methods on eight real-world data sets, and the experimental results show that the proposed MMFS is effective in unsupervised feature selection

    Structure fusion based on graph convolutional networks for semi-supervised classification

    Full text link
    Suffering from the multi-view data diversity and complexity for semi-supervised classification, most of existing graph convolutional networks focus on the networks architecture construction or the salient graph structure preservation, and ignore the the complete graph structure for semi-supervised classification contribution. To mine the more complete distribution structure from multi-view data with the consideration of the specificity and the commonality, we propose structure fusion based on graph convolutional networks (SF-GCN) for improving the performance of semi-supervised classification. SF-GCN can not only retain the special characteristic of each view data by spectral embedding, but also capture the common style of multi-view data by distance metric between multi-graph structures. Suppose the linear relationship between multi-graph structures, we can construct the optimization function of structure fusion model by balancing the specificity loss and the commonality loss. By solving this function, we can simultaneously obtain the fusion spectral embedding from the multi-view data and the fusion structure as adjacent matrix to input graph convolutional networks for semi-supervised classification. Experiments demonstrate that the performance of SF-GCN outperforms that of the state of the arts on three challenging datasets, which are Cora,Citeseer and Pubmed in citation networks

    Enhancing Person Re-identification in a Self-trained Subspace

    Full text link
    Despite the promising progress made in recent years, person re-identification (re-ID) remains a challenging task due to the complex variations in human appearances from different camera views. For this challenging problem, a large variety of algorithms have been developed in the fully-supervised setting, requiring access to a large amount of labeled training data. However, the main bottleneck for fully-supervised re-ID is the limited availability of labeled training samples. To address this problem, in this paper, we propose a self-trained subspace learning paradigm for person re-ID which effectively utilizes both labeled and unlabeled data to learn a discriminative subspace where person images across disjoint camera views can be easily matched. The proposed approach first constructs pseudo pairwise relationships among unlabeled persons using the k-nearest neighbors algorithm. Then, with the pseudo pairwise relationships, the unlabeled samples can be easily combined with the labeled samples to learn a discriminative projection by solving an eigenvalue problem. In addition, we refine the pseudo pairwise relationships iteratively, which further improves the learning performance. A multi-kernel embedding strategy is also incorporated into the proposed approach to cope with the non-linearity in person's appearance and explore the complementation of multiple kernels. In this way, the performance of person re-ID can be greatly enhanced when training data are insufficient. Experimental results on six widely-used datasets demonstrate the effectiveness of our approach and its performance can be comparable to the reported results of most state-of-the-art fully-supervised methods while using much fewer labeled data.Comment: Accepted by ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM

    Visual Understanding via Multi-Feature Shared Learning with Global Consistency

    Full text link
    Image/video data is usually represented with multiple visual features. Fusion of multi-source information for establishing the attributes has been widely recognized. Multi-feature visual recognition has recently received much attention in multimedia applications. This paper studies visual understanding via a newly proposed l_2-norm based multi-feature shared learning framework, which can simultaneously learn a global label matrix and multiple sub-classifiers with the labeled multi-feature data. Additionally, a group graph manifold regularizer composed of the Laplacian and Hessian graph is proposed for better preserving the manifold structure of each feature, such that the label prediction power is much improved through the semi-supervised learning with global label consistency. For convenience, we call the proposed approach Global-Label-Consistent Classifier (GLCC). The merits of the proposed method include: 1) the manifold structure information of each feature is exploited in learning, resulting in a more faithful classification owing to the global label consistency; 2) a group graph manifold regularizer based on the Laplacian and Hessian regularization is constructed; 3) an efficient alternative optimization method is introduced as a fast solver owing to the convex sub-problems. Experiments on several benchmark visual datasets for multimedia understanding, such as the 17-category Oxford Flower dataset, the challenging 101-category Caltech dataset, the YouTube & Consumer Videos dataset and the large-scale NUS-WIDE dataset, demonstrate that the proposed approach compares favorably with the state-of-the-art algorithms. An extensive experiment on the deep convolutional activation features also show the effectiveness of the proposed approach. The code is available on http://www.escience.cn/people/lei/index.htmlComment: 13 pages,6 figures, this paper is accepted for publication in IEEE Transactions on Multimedi

    Effective Discriminative Feature Selection with Non-trivial Solutions

    Full text link
    Feature selection and feature transformation, the two main ways to reduce dimensionality, are often presented separately. In this paper, a feature selection method is proposed by combining the popular transformation based dimensionality reduction method Linear Discriminant Analysis (LDA) and sparsity regularization. We impose row sparsity on the transformation matrix of LDA through 2,1{\ell}_{2,1}-norm regularization to achieve feature selection, and the resultant formulation optimizes for selecting the most discriminative features and removing the redundant ones simultaneously. The formulation is extended to the 2,p{\ell}_{2,p}-norm regularized case: which is more likely to offer better sparsity when 0<p<10<p<1. Thus the formulation is a better approximation to the feature selection problem. An efficient algorithm is developed to solve the 2,p{\ell}_{2,p}-norm based optimization problem and it is proved that the algorithm converges when 0<p20<p\le 2. Systematical experiments are conducted to understand the work of the proposed method. Promising experimental results on various types of real-world data sets demonstrate the effectiveness of our algorithm

    Learning with Low-Quality Data: Multi-View Semi-Supervised Learning with Missing Views

    Get PDF
    The focus of this thesis is on learning approaches for what we call ``low-quality data'' and in particular data in which only small amounts of labeled target data is available. The first part provides background discussion on low-quality data issues, followed by preliminary study in this area. The remainder of the thesis focuses on a particular scenario: multi-view semi-supervised learning. Multi-view learning generally refers to the case of learning with data that has multiple natural views, or sets of features, associated with it. Multi-view semi-supervised learning methods try to exploit the combination of multiple views along with large amounts of unlabeled data in order to learn better predictive functions when limited labeled data is available. However, lack of complete view data limits the applicability of multi-view semi-supervised learning to real world data. Commonly, one data view is readily and cheaply available, but additionally views may be costly or only available in some cases. This thesis work aims to make multi-view semi-supervised learning approaches more applicable to real world data specifically by addressing the issue of missing views through both feature generation and active learning, and addressing the issue of model selection for semi-supervised learning with limited labeled data. This thesis introduces a unified approach for handling missing view data in multi-view semi-supervised learning tasks, which applies to both data with completely missing additional views and data only missing views in some instances. The idea is to learn a feature generation function mapping one view to another with the mapping biased to encourage the features generated to be useful for multi-view semi-supervised learning algorithms. The mapping is then used to fill in views as pre-processing. Unlike previously proposed single-view multi-view learning approaches, the proposed approach is able to take advantage of additional view data when available, and for the case of partial view presence is the first feature-generation approach specifically designed to take into account the multi-view semi-supervised learning aspect. The next component of this thesis is the analysis of an active view completion scenario. In some tasks, it is possible to obtain missing view data for a particular instance, but with some associated cost. Recent work has shown an active selection strategy can be more effective than a random one. In this thesis, a better understanding of active approaches is sought, and it is demonstrated that the effectiveness of an active selection strategy over a random one can depend on the relationship between the views. Finally, an important component of making multi-view semi-supervised learning applicable to real world data is the task of model selection, an open problem which is often avoided entirely in previous work. For cases of very limited labeled training data the commonly used cross-validation approach can become ineffective. This thesis introduces a re-training alternative to the method-dependent approaches similar in motivation to cross-validation, that involves generating new training and test data by sampling from the large amount of unlabeled data and estimated conditional probabilities for the labels. The proposed approaches are evaluated on a variety of multi-view semi-supervised learning data sets, and the experimental results demonstrate their efficacy
    corecore