33 research outputs found

    Semi-supervised Learning for Real-time Segmentation of Ultrasound Video Objects: A Review

    Get PDF
    Real-time intelligent segmentation of ultrasound video object is a demanding task in the field of medical image processing and serves as an essential and critical step in image-guided clinical procedures. However, obtaining reliable and accurate medical image annotations often necessitates expert guidance, making the acquisition of large-scale annotated datasets challenging and costly. This presents obstacles for traditional supervised learning methods. Consequently, semi-supervised learning (SSL) has emerged as a promising solution, capable of utilizing unlabeled data to enhance model performance and has been widely adopted in medical image segmentation tasks. However, striking a balance between segmentation accuracy and inference speed remains a challenge for real-time segmentation. This paper provides a comprehensive review of research progress in real-time intelligent semi-supervised ultrasound video object segmentation (SUVOS) and offers insights into future developments in this area

    Pattern classification approaches for breast cancer identification via MRI: state‐of‐the‐art and vision for the future

    Get PDF
    Mining algorithms for Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCEMRI) of breast tissue are discussed. The algorithms are based on recent advances in multidimensional signal processing and aim to advance current state‐of‐the‐art computer‐aided detection and analysis of breast tumours when these are observed at various states of development. The topics discussed include image feature extraction, information fusion using radiomics, multi‐parametric computer‐aided classification and diagnosis using information fusion of tensorial datasets as well as Clifford algebra based classification approaches and convolutional neural network deep learning methodologies. The discussion also extends to semi‐supervised deep learning and self‐supervised strategies as well as generative adversarial networks and algorithms using generated confrontational learning approaches. In order to address the problem of weakly labelled tumour images, generative adversarial deep learning strategies are considered for the classification of different tumour types. The proposed data fusion approaches provide a novel Artificial Intelligence (AI) based framework for more robust image registration that can potentially advance the early identification of heterogeneous tumour types, even when the associated imaged organs are registered as separate entities embedded in more complex geometric spaces. Finally, the general structure of a high‐dimensional medical imaging analysis platform that is based on multi‐task detection and learning is proposed as a way forward. The proposed algorithm makes use of novel loss functions that form the building blocks for a generated confrontation learning methodology that can be used for tensorial DCE‐MRI. Since some of the approaches discussed are also based on time‐lapse imaging, conclusions on the rate of proliferation of the disease can be made possible. The proposed framework can potentially reduce the costs associated with the interpretation of medical images by providing automated, faster and more consistent diagnosis

    Constrained CycleGAN for Effective Generation of Ultrasound Sector Images of Improved Spatial Resolution

    Full text link
    Objective. A phased or a curvilinear array produces ultrasound (US) images with a sector field of view (FOV), which inherently exhibits spatially-varying image resolution with inferior quality in the far zone and towards the two sides azimuthally. Sector US images with improved spatial resolutions are favorable for accurate quantitative analysis of large and dynamic organs, such as the heart. Therefore, this study aims to translate US images with spatially-varying resolution to ones with less spatially-varying resolution. CycleGAN has been a prominent choice for unpaired medical image translation; however, it neither guarantees structural consistency nor preserves backscattering patterns between input and generated images for unpaired US images. Approach. To circumvent this limitation, we propose a constrained CycleGAN (CCycleGAN), which directly performs US image generation with unpaired images acquired by different ultrasound array probes. In addition to conventional adversarial and cycle-consistency losses of CycleGAN, CCycleGAN introduces an identical loss and a correlation coefficient loss based on intrinsic US backscattered signal properties to constrain structural consistency and backscattering patterns, respectively. Instead of post-processed B-mode images, CCycleGAN uses envelope data directly obtained from beamformed radio-frequency signals without any other non-linear postprocessing. Main Results. In vitro phantom results demonstrate that CCycleGAN successfully generates images with improved spatial resolution as well as higher peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) compared with benchmarks. Significance. CCycleGAN-generated US images of the in vivo human beating heart further facilitate higher quality heart wall motion estimation than benchmarks-generated ones, particularly in deep regions

    Explainable Semantic Medical Image Segmentation with Style

    Full text link
    Semantic medical image segmentation using deep learning has recently achieved high accuracy, making it appealing to clinical problems such as radiation therapy. However, the lack of high-quality semantically labelled data remains a challenge leading to model brittleness to small shifts to input data. Most works require extra data for semi-supervised learning and lack the interpretability of the boundaries of the training data distribution during training, which is essential for model deployment in clinical practice. We propose a fully supervised generative framework that can achieve generalisable segmentation with only limited labelled data by simultaneously constructing an explorable manifold during training. The proposed approach creates medical image style paired with a segmentation task driven discriminator incorporating end-to-end adversarial training. The discriminator is generalised to small domain shifts as much as permissible by the training data, and the generator automatically diversifies the training samples using a manifold of input features learnt during segmentation. All the while, the discriminator guides the manifold learning by supervising the semantic content and fine-grained features separately during the image diversification. After training, visualisation of the learnt manifold from the generator is available to interpret the model limits. Experiments on a fully semantic, publicly available pelvis dataset demonstrated that our method is more generalisable to shifts than other state-of-the-art methods while being more explainable using an explorable manifold
    corecore