4,376 research outputs found

    Semi-Supervised Sound Source Localization Based on Manifold Regularization

    Full text link
    Conventional speaker localization algorithms, based merely on the received microphone signals, are often sensitive to adverse conditions, such as: high reverberation or low signal to noise ratio (SNR). In some scenarios, e.g. in meeting rooms or cars, it can be assumed that the source position is confined to a predefined area, and the acoustic parameters of the environment are approximately fixed. Such scenarios give rise to the assumption that the acoustic samples from the region of interest have a distinct geometrical structure. In this paper, we show that the high dimensional acoustic samples indeed lie on a low dimensional manifold and can be embedded into a low dimensional space. Motivated by this result, we propose a semi-supervised source localization algorithm which recovers the inverse mapping between the acoustic samples and their corresponding locations. The idea is to use an optimization framework based on manifold regularization, that involves smoothness constraints of possible solutions with respect to the manifold. The proposed algorithm, termed Manifold Regularization for Localization (MRL), is implemented in an adaptive manner. The initialization is conducted with only few labelled samples attached with their respective source locations, and then the system is gradually adapted as new unlabelled samples (with unknown source locations) are received. Experimental results show superior localization performance when compared with a recently presented algorithm based on a manifold learning approach and with the generalized cross-correlation (GCC) algorithm as a baseline

    Active Semi-Supervised Learning Using Sampling Theory for Graph Signals

    Full text link
    We consider the problem of offline, pool-based active semi-supervised learning on graphs. This problem is important when the labeled data is scarce and expensive whereas unlabeled data is easily available. The data points are represented by the vertices of an undirected graph with the similarity between them captured by the edge weights. Given a target number of nodes to label, the goal is to choose those nodes that are most informative and then predict the unknown labels. We propose a novel framework for this problem based on our recent results on sampling theory for graph signals. A graph signal is a real-valued function defined on each node of the graph. A notion of frequency for such signals can be defined using the spectrum of the graph Laplacian matrix. The sampling theory for graph signals aims to extend the traditional Nyquist-Shannon sampling theory by allowing us to identify the class of graph signals that can be reconstructed from their values on a subset of vertices. This approach allows us to define a criterion for active learning based on sampling set selection which aims at maximizing the frequency of the signals that can be reconstructed from their samples on the set. Experiments show the effectiveness of our method.Comment: 10 pages, 6 figures, To appear in KDD'1

    Machine learning for outlier detection in medical imaging

    Get PDF
    Outlier detection is an important problem with diverse practical applications. In medical imaging, there are many diagnostic tasks that can be framed as outlier detection. Since pathologies can manifest in so many different ways, the goal is typically to learn from normal, healthy data and identify any deviations. Unfortunately, many outliers in the medical domain can be subtle and specific, making them difficult to detect without labelled examples. This thesis analyzes some of the nuances of medical data and the value of labels in this context. It goes on to propose several strategies for unsupervised learning. More specifically, these methods are designed to learn discriminative features from data of a single class. One approach uses divergent search to continually find different ways to partition the data and thereby accumulates a repertoire of features. The other proposed methods are based on a self-supervised task that distorts normal data to form a contrasting class. A network can then be trained to localize the irregularities and estimate the degree of foreign interference. This basic technique is further enhanced using advanced image editing to create more natural irregularities. Lastly, the same self-supervised task is repurposed for few-shot learning to create a framework for adaptive outlier detection. These proposed methods are able to outperform conventional strategies across a range of datasets including brain MRI, abdominal CT, chest X-ray, and fetal ultrasound data. In particular, these methods excel at detecting more subtle irregularities. This complements existing methods and aims to maximize benefit to clinicians by detecting fine-grained anomalies that can otherwise require intense scrutiny. Note that all approaches to outlier detection must accept some assumptions; these will affect which types of outliers can be detected. As such, these methods aim for broad generalization within the most medically relevant categories. Ultimately, the hope is to support clinicians and to focus their attention and efforts on the data that warrants further analysis.Open Acces
    • …
    corecore